Publications by authors named "Nzakizwanayo J"

Aims: The care of patients undergoing long-term urethral catheterization is frequently complicated by Proteus mirabilis infection. This organism forms dense, crystalline biofilms, which block catheters leading to serious clinical conditions. However, there are currently no truly effective approaches to control this problem.

View Article and Find Full Text PDF

Chlorhexidine (CHD) is a cationic biocide used ubiquitously in healthcare settings. , an important pathogen of the catheterized urinary tract, and isolates of this species are often described as "resistant" to CHD-containing products used for catheter infection control. To identify the mechanisms underlying reduced CHD susceptibility in , we subjected the CHD tolerant clinical isolate RS47 to random transposon mutagenesis and screened for mutants with reduced CHD minimum inhibitory concentrations (MICs).

View Article and Find Full Text PDF
Article Synopsis
  • * The study investigated the effects of oral vs. intravenous antibiotic administration on the rat gut microbiome using amoxicillin and levofloxacin, showing significant dysbiosis in both methods, with more severe impacts noted from amoxicillin.
  • * Gut dysbiosis was temporary, with some recovery of bacterial diversity over 13 days, and intravenous delivery appeared to facilitate a quicker return to normal gut composition compared to oral delivery.
View Article and Find Full Text PDF

is a common pathogen of the catheterised urinary tract and often described as intrinsically resistant to the biocide chlorhexidine (CHD). Here we demonstrate that de-repression of the efflux system has occurred in clinical isolates of and reduces susceptibility to CHD and other cationic biocides. Compared to other isolates examined, RS47 exhibited a significantly higher CHD MIC (≥512 μg/ml) and significantly greater expression of Comparison of the RS47 and cognate repressor with sequences from other isolates, indicated that RS47 encodes an inactivated Complementation of RS47 with a functional s from isolate RS50a (which exhibited the lowest expression and lowest CHD MIC) reduced expression by ∼59-fold, and markedly lowered the MIC of CHD and other cationic biocides.

View Article and Find Full Text PDF

often complicates the care of catheterized patients through the formation of crystalline biofilms which block urine flow. Bacteriophage therapy has been highlighted as a promising approach to control this problem, but relatively few phages infecting have been characterized. Here we characterize five phages capable of infecting , including those shown to reduce biofilm formation, and provide insights regarding the wider ecological and evolutionary relationships of these phages.

View Article and Find Full Text PDF

Urethral catheters are among the most widely used medical devices, applied to manage a wide range of conditions in hospital, community, and care home settings. In long-term catheterized individuals, infection with Proteus mirabilis frequently complicates the care of patients owing to formation of extensive crystalline biofilms. Here we describe the use of an in vitro bladder model of the catheterized urinary tract and associated analyses to study P.

View Article and Find Full Text PDF

Faeces are comprised of a wide array of metabolites arising from the circulatory system as well as the human microbiome. A global metabolite analysis (metabolomics) of faecal extracts offers the potential to uncover new compounds which may be indicative of the onset of bowel diseases such as colorectal cancer (CRC). To date, faecal metabolomics is still in its infancy and the compounds of low abundance present in faecal extracts poorly characterised.

View Article and Find Full Text PDF

Urethral catheters are the most commonly deployed medical devices and used to manage a wide range of conditions in both hospital and community care settings. The use of long-term catheterization, where the catheter remains in place for a period >28 days remains common, and the care of these patients is often undermined by the acquisition of infections and formation of biofilms on catheter surfaces. Particular problems arise from colonization with urease-producing species such as Proteus mirabilis, which form unusual crystalline biofilms that encrust catheter surfaces and block urine flow.

View Article and Find Full Text PDF

Biofilm formation in wounds is considered a major barrier to successful treatment, and has been associated with the transition of wounds to a chronic non-healing state. Here, we present a novel laboratory model of wound biofilm formation using porcine skin and a custom burn wound array device. The model supports high-throughput studies of biofilm formation and is compatible with a range of established methods for monitoring bacterial growth, biofilm formation, and gene expression.

View Article and Find Full Text PDF

Urinary catheters have been used on an intermittent or indwelling basis for centuries, in order to relieve urinary retention and incontinence. Nevertheless, the use of urinary catheters in the clinical setting is fraught with complication, the most common of which is the development of nosocomial urinary tract infections, known as catheter-associated urinary tract infections. Infections of this nature are not only significant owing to their high incidence rate and subsequent economic burden but also to the severe medical consecutions that result.

View Article and Find Full Text PDF

Just as the expansion in genome sequencing has revealed and permitted the exploitation of phylogenetic signals embedded in bacterial genomes, the application of metagenomics has begun to provide similar insights at the ecosystem level for microbial communities. However, little is known regarding this aspect of bacteriophage associated with microbial ecosystems, and if phage encode discernible habitat-associated signals diagnostic of underlying microbiomes. Here we demonstrate that individual phage can encode clear habitat-related 'ecogenomic signatures', based on relative representation of phage-encoded gene homologues in metagenomic data sets.

View Article and Find Full Text PDF

Proteus mirabilis forms extensive crystalline biofilms on indwelling urethral catheters that block urine flow and lead to serious clinical complications. The Bcr/CflA efflux system has previously been identified as important for development of P. mirabilis crystalline biofilms, highlighting the potential for efflux pump inhibitors (EPIs) to control catheter blockage.

View Article and Find Full Text PDF

The crystalline biofilms of Proteus mirabilis can seriously complicate the care of patients undergoing long-term indwelling urinary catheterisation. Expression of bacterial urease causes a significant increase in urinary pH, leading to the supersaturation and precipitation of struvite and apatite crystals. These crystals become lodged within the biofilm, resulting in the blockage of urine flow through the catheter.

View Article and Find Full Text PDF

We describe a novel infection-responsive coating for urinary catheters that provides a clear visual early warning of Proteus mirabilis infection and subsequent blockage. The crystalline biofilms of P. mirabilis can cause serious complications for patients undergoing long-term bladder catheterisation.

View Article and Find Full Text PDF

Proteus mirabilis forms dense crystalline biofilms on catheter surfaces that occlude urine flow, leading to serious clinical complications in long-term catheterized patients, but there are presently no truly effective approaches to control catheter blockage by this organism. This study evaluated the potential for bacteriophage therapy to control P. mirabilis infection and prevent catheter blockage.

View Article and Find Full Text PDF

Accumulating evidence shows indigenous gut microbes can interact with the human host through modulation of serotonin (5-HT) signaling. Here we investigate the impact of the probiotic Escherichia coli Nissle 1917 (EcN) on 5-HT signalling in gut tissues. Ex-vivo mouse ileal tissue sections were treated with either EcN or the human gut commensal MG1655, and effects on levels of 5-HT, precursors, and metabolites, were evaluated using amperometry and high performance liquid chromatography with electrochemical detection (HPLC-EC).

View Article and Find Full Text PDF

The early detection of wound infection in situ can dramatically improve patient care pathways and clinical outcomes. There is increasing evidence that within an infected wound the main bacterial mode of living is a biofilm: a confluent community of adherent bacteria encased in an extracellular polymeric matrix. Here we have reported the development of a prototype wound dressing, which switches on a fluorescent color when in contact with pathogenic wound biofilms.

View Article and Find Full Text PDF

Escherichia coli Nissle 1917 (EcN) is among the best characterised probiotics, with a proven clinical impact in a range of conditions. Despite this, the mechanisms underlying these "probiotic effects" are not clearly defined. Here we applied random transposon mutagenesis to identify genes relevant to the interaction of EcN with intestinal epithelial cells.

View Article and Find Full Text PDF

In order to better control nosocomial infections, and facilitate the most prudent and effective use of antibiotics, improved strategies for the rapid detection and identification of problematic bacterial pathogens are required. DNA aptamers have much potential in the development of diagnostic assays and biosensors to address this important healthcare need, but further development of aptamers targeting common pathogens, and the strategies used to obtain specific aptamers are required. Here we demonstrate the application of a quantitative PCR (qPCR) controlled Cell-SELEX process, coupled with downstream secondary-conformation-based aptamer profiling.

View Article and Find Full Text PDF

Proteus mirabilis forms extensive crystalline biofilms on urethral catheters that occlude urine flow and frequently complicate the management of long-term-catheterized patients. Here, using random transposon mutagenesis in conjunction with in vitro models of the catheterized urinary tract, we elucidate the mechanisms underpinning the formation of crystalline biofilms by P. mirabilis.

View Article and Find Full Text PDF