Oxidative stress is thought to play a key role in the development of intestinal damage in intestinal inflammatory diseases. Several molecules are involved in the intestinal inflammation, either as pro- or anti-inflammatory factors; however, their effects on intestinal oxidative stress seem to be controversial. This work analyzes the contribution of pro- and anti-inflammatory molecules to the balance of oxidative damage in intestinal epithelial cells, as well as their effects on cellular antioxidant enzyme activity.
View Article and Find Full Text PDFSerotonin is a neuromodulator mainly synthesized by intestinal enterochromaffin cells that regulate overall intestinal physiology. The serotonin transporter (SERT) determines the final serotonin availability and has been described as altered in inflammatory bowel diseases. IL-10 is an anti-inflammatory cytokine that is involved in intestinal inflammatory processes and also contributes to intestinal mucosa homeostasis.
View Article and Find Full Text PDFSerotonin, a neurotransmitter/autocrineagent mainly synthesized by intestinal enterochromaffin cells, regulates the whole intestinal physiology. Toll-like receptor 3 (TLR3) also contributes to the intestinal physiology by modulating intestinal innate immunity responses. Both serotonin and TLR3 are involved in intestinal inflammatory processes; however, the role of TLR3 in the regulation of intestinal 5-HT availability remains unexplored.
View Article and Find Full Text PDFGastrointestinal serotonin (5-HT) and melatonin are two closely related neuromodulators which are synthesised in the enterochromaffin cells of the intestinal epithelium and which have been shown to be involved in the physiopathology of the gastrointestinal tract. The effects of 5-HT depend on 5-HT availability which is, in part, modulated by the serotonin transporter (SERT). This transporter provides an efficient 5-HT uptake after release and is expressed in the membrane of the enterocytes.
View Article and Find Full Text PDFIntestinal serotoninergic activity and serotonin transporter (SERT) function have been shown to be altered in intestinal inflammatory diseases. Serotonin (5-HT) plays a critical role in the regulation of gastrointestinal physiology. Activity of 5-HT depends on its extracellular availability, partly modulated by SERT that transports 5-HT into the cell.
View Article and Find Full Text PDF