The relationships between dietary compounds, derivative metabolites, and host metabolism and immunity are controlled by diverse molecular mechanisms. Essential contributions to these dynamics come from the community of microbes (the microbiome) inhabiting the human digestive tract. The composition and function of the microbiome are shaped by available nutrients, and reciprocally, these organisms produce an as yet poorly defined repertoire of molecules that communicate with the epithelial barrier and the mucosal immune system.
View Article and Find Full Text PDFGlycogen synthesis is a major component of the insulin response, and defective glycogen synthesis is a major portion of insulin resistance. Insulin regulates glycogen synthase (GS) through incompletely defined pathways that activate the enzyme through dephosphorylation and, more potently, allosteric activation. We identify Epm2aip1 as a GS-associated protein.
View Article and Find Full Text PDFMigraine is a highly prevalent, disabling and complex episodic brain disorder whose pathogenesis is poorly understood, due in part to the lack of valid animal models. Here we report behavioral evidence of hallmark migraine features, photophobia and unilateral head pain, in transgenic knock-in mice bearing human familial hemiplegic migraine, type 1 (FHM-1) gain-of-function missense mutations (R192Q or S218L) in the Cacna1a gene encoding the CaV2.1 calcium channel α1 subunit.
View Article and Find Full Text PDFX-linked Myopathy with Excessive Autophagy (XMEA) is a childhood onset disease characterized by progressive vacuolation and atrophy of skeletal muscle. We show that XMEA is caused by hypomorphic alleles of the VMA21 gene, that VMA21 is the diverged human ortholog of the yeast Vma21p protein, and that like Vma21p, VMA21 is an essential assembly chaperone of the vacuolar ATPase (V-ATPase), the principal mammalian proton pump complex. Decreased VMA21 raises lysosomal pH which reduces lysosomal degradative ability and blocks autophagy.
View Article and Find Full Text PDFX-linked myopathy with excessive autophagy (XMEA) is a childhood-onset disease characterized by progressive vacuolation and atrophy of skeletal muscle. We show that XMEA is caused by hypomorphic alleles of the VMA21 gene, that VMA21 is the diverged human ortholog of the yeast Vma21p protein, and that like Vma21p it is an essential assembly chaperone of the V-ATPase, the principal mammalian proton pump complex. Decreased VMA21 raises lysosomal pH, which reduces lysosomal degradative ability and blocks autophagy.
View Article and Find Full Text PDF