Publications by authors named "Nyosha Alikhani"

The activated RAS/RAF cascade plays a crucial role in lung cancer, but is also known to induce cellular senescence, a major barrier imposed on tumor cells early in tumorigenesis. MYC is a key factor in suppression of RAS/BRAF(V600E)-induced senescence in vitro. However, it is still unclear whether MYC has the same role during tumor development in vivo.

View Article and Find Full Text PDF

Endogenous hyperinsulinemia and insulin receptor (IR)/IGF-I receptor (IGF-IR) phosphorylation in tumors are associated with a worse prognosis in women with breast cancer. In vitro, insulin stimulation of the IR increases proliferation of breast cancer cells. However, in vivo studies demonstrating that IR activation increases tumor growth, independently of IGF-IR activation, are lacking.

View Article and Find Full Text PDF

The Her2 oncogene is expressed in ∼25% of human breast cancers and is associated with metastatic progression and poor outcome. Epidemiological studies report that breast cancer incidence and mortality rates are higher in women with type 2 diabetes. Here, we use a mouse model of Her2-mediated breast cancer on a background of hyperinsulinemia to determine how elevated circulating insulin levels affect Her2-mediated primary tumor growth and lung metastasis.

View Article and Find Full Text PDF

Introduction: Hyperinsulinemia, which is common in early type 2 diabetes (T2D) as a result of the chronically insulin-resistant state, has now been identified as a specific factor which can worsen breast cancer prognosis. In breast cancer, a high rate of mortality persists due to the emergence of pulmonary metastases.

Methods: Using a hyperinsulinemic mouse model (MKR+/+) and the metastatic, c-Myc-transformed mammary carcinoma cell line Mvt1, we investigated how high systemic insulin levels would affect the progression of orthotopically inoculated primary mammary tumors to lung metastases.

View Article and Find Full Text PDF

Accumulation of amyloid-β peptide (Aβ), the neurotoxic peptide implicated in the pathogenesis of Alzheimer's disease (AD), has been shown in brain mitochondria of AD patients and of AD transgenic mouse models. The presence of Aβ in mitochondria leads to free radical generation and neuronal stress. Recently, we identified the presequence protease, PreP, localized in the mitochondrial matrix in mammalian mitochondria as the novel mitochondrial Aβ-degrading enzyme.

View Article and Find Full Text PDF

Mitochondrial presequences and other unstructured peptides are degraded inside mitochondria by presequence proteases (PrePs) identified in Arabidopsis thaliana (AtPreP), humans (hPreP), and yeast (Cym1/Mop112). The presequences of A. thaliana and human PreP are predicted to consist of 85 and 29 amino acids, respectively, whereas the Saccharomyces cerevisiae Cym1/Mop112 presequence contains only 7 residues.

View Article and Find Full Text PDF

The novel peptidasome, called presequence protease, PreP, was originally identified and characterized in Arabidopsis thaliana as a mitochondrial matrix and chloroplast stroma localized metalloprotease. PreP has a function as the organellar peptide clearing protease and is responsible for degrading free targeting peptides and also other unstructured peptides up to 65 amino acid residues that might be toxic to organellar functions. PreP contains an inverted Zn-binding motif and belongs to the pitrilysin protease family.

View Article and Find Full Text PDF

Several studies suggest mitochondrial dysfunction as a possible mechanism underlying the development of Alzheimer disease (AD). There is data showing that amyloid-beta (A beta) peptide is present in AD brain mitochondria. The human presequence protease (hPreP) was recently shown to be the major mitochondrial A beta-degrading enzyme.

View Article and Find Full Text PDF

Several lines of evidence suggest mitochondrial dysfunction as a possible underlying mechanism of Alzheimer's disease (AD). Accumulation of the amyloid-beta peptide (Abeta), a neurotoxic peptide implicated in the pathogenesis of AD, has been detected in brain mitochondria of AD patients and AD transgenic mouse models. In vitro evidence suggests that the Abeta causes mitochondrial dysfunction e.

View Article and Find Full Text PDF

The amyloid beta-peptide (Abeta) has been suggested to exert its toxicity intracellularly. Mitochondrial functions can be negatively affected by Abeta and accumulation of Abeta has been detected in mitochondria. Because Abeta is not likely to be produced locally in mitochondria, we decided to investigate the mechanisms for mitochondrial Abeta uptake.

View Article and Find Full Text PDF

Recently we have identified the novel mitochondrial peptidase responsible for degrading presequences and other short unstructured peptides in mitochondria, the presequence peptidase, which we named PreP peptidasome. In the present study we have identified and characterized the human PreP homologue, hPreP, in brain mitochondria, and we show its capacity to degrade the amyloid beta-protein (Abeta). PreP belongs to the pitrilysin oligopeptidase family M16C containing an inverted zinc-binding motif.

View Article and Find Full Text PDF

The liver X receptors alpha and beta (LXRalpha and LXRbeta) are members of the nuclear receptor superfamily of proteins which are highly expressed in metabolically active tissues. They regulate gene expression of critical genes involved in cholesterol catabolism and transport, lipid and triglyceride biosynthesis, and carbohydrate metabolism in response to distinct oxysterol intermediates in the cholesterol metabolic pathway. Several LXR target genes have been identified, but there is limited information on how expression of the LXRs themselves is controlled.

View Article and Find Full Text PDF