RSC Adv
June 2024
Organic light emitting diode (OLED) and organic solar cell (OSC) properties of ethyl 4-[()-(2-hydroxy-4-methoxyphenyl)methyleneamino]benzoate (EMAB) and its Pt, Pd, Ni, Ir, Rh, and Zn complexes have been theoretically studied herein. Geometry optimizations have been performed the rSCAN-3c composite method while single-point calculations have been carried out at the PBE0-D3(BJ)/def2-TZVP level of theory. Results have shown that complexation with selected metal ions improves hole and electron transfer rates in Pt[EMAB] and Rh[EMAB] .
View Article and Find Full Text PDFThe nonlinear optical (NLO) properties of ethyl 4-[()-(2-hydroxy-4-methoxyphenyl)methyleneamino]benzoate (EMAB) and some of its derivatives are investigated herein using the density functional theory (DFT) and time-dependent (TD)-DFT methods. The density functionals B3LYP, CAM-B3LYP, M06-2X and B97XD, and basis sets 6-31 + G**, 6-311 + + G** and Def2-TZVPP have been used. From the results, EMAB and its substituted derivatives studied are promising candidates for NLO materials.
View Article and Find Full Text PDFMol Divers
April 2024
The emergence of artemisinin-resistant variants of Plasmodium falciparum necessitates the urgent search for novel antimalarial drugs. In this regard, an in silico study to screen antimalarial drug candidates from a series of benzimidazole-thiosemicarbazone hybrid molecules with interesting antiplasmodial properties and explore their falcipain-2 (FP2) inhibitory potentials has been undertaken herein. FP2 is a key cysteine protease that degrades hemoglobin in Plasmodium falciparum and is an important biomolecular target in the development of antimalarial drugs.
View Article and Find Full Text PDFThe sensitivity of pure and doped XN (X = B and Al) fullerene-like nano-cages (FLNs) toward the anti-cancer drug temozolomide (TMZ) is probed herein at DFT/M06-2X-D3/6-311G(d,p) theoretical level in both gas phase and water. A noticeable affinity of the FLNs toward TMZ was observed along with the negative gas-phase adsorption energies -1.37 and -2.
View Article and Find Full Text PDFHerein is presented a density functional theory (DFT) study of reactivity and structural properties of transition metal complexes of the Schiff base ligand 2,2'(1E,1'E)-(ethane-1,2-diylbis(azan-1-yl-1-ylidene))bis(phenylmethan-1-yl-1-ylidene)dibenzoic acid (hereafter denoted EDA2BB) with Cu(II), Mn(II), Ni(II), and Co(II). The quantum theory of atoms-in-molecules (QTAIM), conceptual DFT, natural population analysis (NPA), and molecular electrostatic potential (MEP) methods have been used. Results have revealed a distorted octahedral geometry around the central metal ion in each gas phase complex.
View Article and Find Full Text PDFThiosemicarbazones display diverse pharmacological properties, including antimalarial activities. Their pharmacological activities have been studied in depth, but little of this research has focused on their antimalarial mode of action. To elucidate this antimalarial mechanism, we investigated the nature of the interactions between iron(III) protoporphyrin IX (Fe(III)PPIX) and the thione-thiol tautomers of 4-methoxyacetophenone thiosemicarbazone (MAPTSC).
View Article and Find Full Text PDFThe chelating ability of juglone and two of its derivatives towards Feion and the antioxidant activity (AOA) of the resulting chelates and complexes (in the presence of HO and CHOH as ligands) in gas phase is reported via bond dissociation enthalpy, ionization potential, proton dissociation enthalpy, proton affinity, and electron transfer enthalpy. The DFT/B3LYP level of theory associated with the 6-31+G(d,p) and 6-31G(d) Pople-style basis sets on the atoms of the ligands and the central Fe(II), respectively, was used. Negative chelation free energies obtained revealed that juglone derivatives possessing the O-H substituent (L) have the greatest ability to chelate Fe ion.
View Article and Find Full Text PDF