Publications by authors named "Nyanza Rothman"

Mucopolysaccharidosis VI (MPS VI) is a rare lysosomal disease arising from impaired function of the enzyme arylsulfatase B (ARSB). This impairment causes aberrant accumulation of dermatan sulfate, a glycosaminoglycan (GAG) abundant in cartilage. While clinical severity varies along with age at first symptom manifestation, MPS VI usually presents early and strongly affects the skeleton.

View Article and Find Full Text PDF

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder whose most debilitating pathology is progressive and cumulative heterotopic ossification (HO) of skeletal muscles, ligaments, tendons, and fascia. FOP is caused by mutations in the type I BMP receptor gene ACVR1, which enable ACVR1 to utilize its natural antagonist, activin A, as an agonistic ligand. The physiological relevance of this property is underscored by the fact that HO in FOP is exquisitely dependent on activation of FOP-mutant ACVR1 by activin A, an effect countered by inhibition of anti-activin A via monoclonal antibody treatment.

View Article and Find Full Text PDF

Regulation of food intake is a recently identified endocrine function of bone that is mediated by Lipocalin-2 (LCN2). Osteoblast-secreted LCN2 suppresses appetite and decreases fat mass while improving glucose metabolism. We now show that serum LCN2 levels correlate with insulin levels and β-cell function, indices of healthy glucose metabolism, in obese mice and obese, prediabetic women.

View Article and Find Full Text PDF

Activin A functions in BMP signaling in two ways: it either engages ACVR1B to activate Smad2/3 signaling or binds ACVR1 to form a non-signaling complex (NSC). Although the former property has been studied extensively, the roles of the NSC remain unexplored. The genetic disorder fibrodysplasia ossificans progressiva (FOP) provides a unique window into ACVR1/Activin A signaling because in that disease Activin can either signal through FOP-mutant ACVR1 or form NSCs with wild-type ACVR1.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are crucial for suppressing autoimmunity and inflammation mediated by conventional T cells. To be useful, some Tregs should have overlapping specificity with relevant self-reactive or pathogen-specific clones. Whether matching recognition between Tregs and non-Tregs might arise through stochastic or deterministic mechanisms has not been addressed.

View Article and Find Full Text PDF

Growth signals drive hematopoietic progenitor cells to proliferate and branch into divergent cell fates, but how unequal outcomes arise from a common progenitor is not fully understood. We used steady-state analysis of in vivo hematopoiesis and Fms-related tyrosine kinase 3 ligand (Flt3L)-induced in vitro differentiation of dendritic cells (DCs) to determine how growth signals regulate lineage bias. We found that Flt3L signaling induced anabolic activation and proliferation of DC progenitors, which was associated with DC differentiation.

View Article and Find Full Text PDF

Unequal transmission of nutritive signaling during cell division establishes fate disparity between sibling lymphocytes, but how asymmetric signaling becomes organized is not understood. We show that receptor-associated class I phosphatidylinositol 3-kinase (PI3K) signaling activity, indexed by phosphatidylinositol (3,4,5)-trisphosphate (PIP) staining, is spatially restricted to the microtubule-organizing center and subsequently to one pole of the mitotic spindle in activated T and B lymphocytes. Asymmetric PI3K activity co-localizes with polarization of antigen receptor components implicated in class I PI3K signaling and with facultative glucose transporters whose trafficking is PI3K dependent and whose abundance marks cells destined for differentiation.

View Article and Find Full Text PDF

Anabolic metabolism in lymphocytes promotes plasmablast and cytotoxic T cell differentiation at the expense of self-renewal. Heightened expression and function of the transcription factor IFN regulatory factor 4 (IRF4) accompany enhanced anabolic induction and full commitment to functional differentiation in B cells and CD8 T cells. In this study, we used a genetic approach to determine whether IRF4 plays an analogous role in Th1 cell induction.

View Article and Find Full Text PDF

Immaturity of the immune system of human fetuses and neonates is often invoked to explain their increased susceptibility to infection; however, the development of the fetal innate immune system in early life remains incompletely explored. We now show that the most mature NK cells found in adult (or postnatal) human circulation (CD94CD16) are absent during ontogeny. Human fetal NK cells were found to express the 2 signature T-box transcription factors essential for the development of all murine NK and NK-like cells, eomesodermin (Eomes) and T-bet.

View Article and Find Full Text PDF

Regeneration requires related cells to diverge in fate. We show that activated lymphocytes yield sibling cells with unequal elimination of aged mitochondria. Disparate mitochondrial clearance impacts cell fate and reflects larger constellations of opposing metabolic states.

View Article and Find Full Text PDF

Upon infection, an activated CD4 T cell produces terminally differentiated effector cells and renews itself for continued defense. In this study, we show that differentiation and self-renewal arise as opposing outcomes of sibling CD4 T cells. After influenza challenge, antigen-specific cells underwent several divisions in draining lymph nodes (LN; DLNs) while maintaining expression of TCF1.

View Article and Find Full Text PDF

Selected CD8 T cells must divide, produce differentiated effector cells, and self-renew, often repeatedly. We now show that silencing expression of the transcription factor TCF1 marks loss of self-renewal by determined effector cells and that this requires cell division. In acute infections, the first three CD8 T cell divisions produce daughter cells with unequal proliferative signaling but uniform maintenance of TCF1 expression.

View Article and Find Full Text PDF

Type 1 innate lymphocytes comprise two developmentally divergent lineages, type 1 helper innate lymphoid cells (hILC1s) and conventional NK cells (cNKs). All type 1 innate lymphocytes (ILCs) express the transcription factor T-bet, but cNKs additionally express Eomesodermin (Eomes). We show that deletion of Eomes alleles at the onset of type 1 ILC maturation using NKp46-Cre imposes a substantial block in cNK development.

View Article and Find Full Text PDF

Metazoan sibling cells often diverge in activity and identity, suggesting links between growth signals and cell fate. We show that unequal transduction of nutrient-sensitive PI3K/AKT/mTOR signaling during cell division bifurcates transcriptional networks and fates of kindred cells. A sibling B lymphocyte with stronger signaling, indexed by FoxO1 inactivation and IRF4 induction, undergoes PI3K-driven Pax5 repression and plasma cell determination, while its sibling with weaker PI3K activity renews a memory or germinal center B cell fate.

View Article and Find Full Text PDF

Central memory (CM) CD8(+) T cells "remember" prior encounters because they maintain themselves through cell division in the absence of ongoing challenge (homeostatic self-renewal), as well as reproduce the CM fate while manufacturing effector cells during secondary Ag encounters (rechallenge self-renewal). We tested the consequence of conditional deletion of the bone marrow homing receptor CXCR4 on antiviral T cell responses. CXCR4-deficient CD8(+) T cells have impaired memory cell maintenance due to defective homeostatic proliferation.

View Article and Find Full Text PDF