Publications by authors named "Nwe Y Bamaung"

Emerging clinical and pre-clinical data indicate that both insulin-like growth factor receptor (IGF-IR) and members of the epidermal growth factor (EGF) family of receptor tyrosine kinases (RTKs) exhibit significant cross-talk in human cancers. Therefore, a small molecule that successfully inhibits the signaling of both classes of oncogenic kinases might provide an attractive agent for chemotherapeutic use. Herein, we disclose the structure activity relationships that led to the synthesis and biological characterization of 14, a novel small molecule inhibitor of both IGF-IR and members of the epidermal growth factor family of RTKs.

View Article and Find Full Text PDF

The insulin-like growth factor-1 receptor (IGF-1R) and ErbB family of receptors are receptor tyrosine kinases that play important roles in cancer. Lack of response and resistance to therapies targeting ErbB receptors occur and are often associated with activation of the IGF-1R pathway. Combinations of agents that inhibit IGF-1R and ErbB receptors have been shown to synergistically block cancer cell proliferation and xenograft tumor growth.

View Article and Find Full Text PDF

A high throughput screen of Abbott's compound repository revealed that the pyrazolo[3,4-d]pyrimidine class of kinase inhibitors possessed moderate potency for IGF-IR, a promising target for cancer chemotherapy. The synthesis and subsequent optimization of this class of compounds led to the discovery of 14, a compound that possesses in vivo IGF-IR inhibitory activity.

View Article and Find Full Text PDF

Methionine aminopeptidase-2 (MetAP2) is a novel target for cancer therapy. As part of an effort to discover orally active reversible inhibitors of MetAP2, a series of anthranilic acid sulfonamides with micromolar affinities for human MetAP2 were identified using affinity selection by mass spectrometry (ASMS) screening. These micromolar hits were rapidly improved to nanomolar leads on the basis of insights from protein crystallography; however, the compounds displayed extensive binding to human serum albumin and had limited activity in cellular assays.

View Article and Find Full Text PDF

We have screened molecules for inhibition of MetAP2 as a novel approach toward antiangiogenesis and anticancer therapy using affinity selection/mass spectrometry (ASMS) employing MetAP2 loaded with Mn(2+) as the active site metal. After a series of anthranilic acid sulfonamides with micromolar affinities was identified, chemistry efforts were initiated. The micromolar hits were quickly improved to potent nanomolar inhibitors by chemical modifications guided by insights from X-ray crystallography.

View Article and Find Full Text PDF

Substituted 3-amino-2-hydroxyamides and related hydroxyamides and acylhydrazines were identified as inhibitors of human methionine aminopeptidase-2 (MetAP2). Examination of substituents through parallel synthesis and iterative structure-based design allowed the identification of potent inhibitors with good selectivity against MetAP1. Diacylhydrazine 3t (A-357300) was identified as an analogue displaying inhibition of methionine processing and cellular proliferation in human microvascular endothelial cells (HMVEC).

View Article and Find Full Text PDF