Publications by authors named "Nwe Nwe Soe"

The contribution of alloresponses to mismatched HLA-DP in solid organ transplantation and hematopoietic stem cell transplantation (HCT) has been well documented. Exploring the regulatory mechanisms of DPB1 alleles has become an important question to be answered. In this study, our initial investigation focused on examining the correlation between the rs9277534G/A SNP and DPB1 mRNA expression.

View Article and Find Full Text PDF

The signaling capacity of HLA molecules in vascular cells has been well established. Intracellular signaling and association with the coreceptor integrin β4 has been well-studied for HLA class I. However, little is known regarding HLA class II intracellular signaling in human endothelial cells.

View Article and Find Full Text PDF

Cyclophilin A (CyPA) is an important mediator in cardiovascular diseases. It possesses peptidyl-prolyl cis-trans isomerase activity (PPIase) and chaperone functions, which regulate protein folding, intracellular trafficking and reactive oxygen species (ROS) production. Platelet glycoprotein receptor αIIbβ3 integrin activation is the common pathway for platelet activation.

View Article and Find Full Text PDF

Aims: Cyclophilin A (CyPA) is a pro-inflammatory mediator involved in oxidative stress-related cardiovascular diseases. It is secreted from vascular smooth muscle cell (VSMC) in response to reactive oxygen species (ROS) in a highly regulated manner. Extracellular CyPA activates VSMCs and endothelial cells (ECs) promoting inflammation, cell growth, and cell death.

View Article and Find Full Text PDF

Objective: Angiotensin II (AngII) signal transduction in vascular smooth muscle cells (VSMC) is mediated by reactive oxygen species (ROS). Cyclophilin A (CyPA) is a ubiquitously expressed cytosolic protein that possesses peptidyl-prolyl cis-trans isomerase activity, scaffold function, and significantly enhances AngII-induced ROS production in VSMC. We hypothesized that CyPA regulates AngII-induced ROS generation by promoting translocation of NADPH oxidase cytosolic subunit p47phox to caveolae of the plasma membrane.

View Article and Find Full Text PDF

Objective: Cyclophilin A (CyPA, encoded by Ppia) is a proinflammatory protein secreted in response to oxidative stress in mice and humans. We recently demonstrated that CyPA increased angiotensin II (Ang II)-induced reactive oxygen species (ROS) production in the aortas of apolipoprotein E (Apoe)-/- mice. In this study, we sought to evaluate the role of CyPA in Ang II-induced cardiac hypertrophy.

View Article and Find Full Text PDF

Cyclophilin A (CyPA; encoded by Ppia) is a ubiquitously expressed protein secreted in response to inflammatory stimuli. CyPA stimulates vascular smooth muscle cell migration and proliferation, endothelial cell adhesion molecule expression, and inflammatory cell chemotaxis. Given these activities, we hypothesized that CyPA would promote atherosclerosis.

View Article and Find Full Text PDF

Aim: Calcium channel blockers (CCBs) inhibit the migration of vascular smooth muscle cells (VSMC) by mechanisms that remain poorly understood. The purpose of the present study was to characterize the signaling mechanisms by which CCBs inhibit VSMC migration.

Methods And Results: Nifedipine potently inhibited platelet-derived growth factor (PDGF)-induced chemotaxis, collagen I-induced haptotaxis, and wound-induced migration of human aortic VSMC.

View Article and Find Full Text PDF

Recent studies suggest that osteopontin (OPN) plays a critical role in the progression of atherosclerotic plaques and that angiotensin II (Ang II) is a potent upregulator of OPN expression. The goal of the present study was to characterize the signaling mechanisms whereby Ang II increases OPN expression in vascular smooth muscle cells (VSMC). YM-254890, a specific inhibitor of G(q/11), potently suppressed Ang II-induced OPN expression and ERK1/2 activation.

View Article and Find Full Text PDF

Objectives: Enhanced osteoclastogenesis, increased bone resorption, and osteoporosis have been reported in osteoprotegerin-deficient (OPG (-/-)) mice. OPG (-/-) mice available in Japan usually do not show vascular calcification. We have found that arterial calcification can be quickly induced by a simple procedure in OPG (-/-) mice.

View Article and Find Full Text PDF