Publications by authors named "Nuwanthi Suwandaratne"

Solar fuel generation mediated by semiconductor heterostructures represents a promising strategy for sustainable energy conversion and storage. The design of semiconductor heterostructures for photocatalytic energy conversion requires the separation of photogenerated charge carriers in real space and their delivery to active catalytic sites at the appropriate overpotentials to initiate redox reactions. Operation of the desired sequence of light harvesting, charge separation, and charge transport events within heterostructures is governed by the thermodynamic energy offsets of the two components and their photoexcited charge-transfer reactivity, which determine the extent to which desirable processes can outcompete unproductive recombination channels.

View Article and Find Full Text PDF

We synthesized a new class of heterostructures by depositing CdS, CdSe, or CdTe quantum dots (QDs) onto α-VO nanowires (NWs) via either successive ionic layer adsorption and reaction (SILAR) or linker-assisted assembly (LAA). SILAR yielded the highest loadings of QDs per NW, whereas LAA enabled better control over the size and properties of QDs. Soft and hard x-ray photoelectron spectroscopy in conjunction with density functional theory calculations revealed that all α-VO/QD heterostructures exhibited Type-II band offset energetics, with a staggered gap where the conduction- and valence-band edges of α-VO NWs lie at lower energies (relative to the vacuum level) than their QD counterparts.

View Article and Find Full Text PDF

The development of efficient solar energy conversion to augment other renewable energy approaches is one of the grand challenges of our time. Water splitting, or the disproportionation of HO into energy-dense fuels, H and O, is undoubtedly a promising strategy. Solar water splitting involves the concerted transfer of four electrons and four protons, which requires the synergistic operation of solar light harvesting, charge separation, mass and charge transport, and redox catalysis processes.

View Article and Find Full Text PDF

Tackling the complex challenge of harvesting solar energy to generate energy-dense fuels such as hydrogen requires the design of photocatalytic nanoarchitectures interfacing components that synergistically mediate a closely interlinked sequence of light-harvesting, charge separation, charge/mass transport, and catalytic processes. The design of such architectures requires careful consideration of both thermodynamic offsets and interfacial charge-transfer kinetics to ensure long-lived charge carriers that can be delivered at low overpotentials to the appropriate catalytic sites while mitigating parasitic reactions such as photocorrosion. Here we detail the theory-guided design and synthesis of nanowire/quantum dot heterostructures with interfacial electronic structure specifically tailored to promote light-induced charge separation and photocatalytic proton reduction.

View Article and Find Full Text PDF

Thiols, including organothiol and thiol-containing biomolecules, are among the most important classes of chemicals that are used broadly in organic synthesis, biological chemistry, and nanosciences. Thiol pKa values are key indicators of thiol reactivity and functionality. Reported herein is an internally referenced Raman-based pH titration method that enables reliable quantification of thiol pKa values for both mono- and dithiols in water.

View Article and Find Full Text PDF