Publications by authors named "Nusskern D"

Background: Prostate cancer diagnosis using the PSA test remains controversial because of overdiagnosis and overtreatment of potentially indolent cancers. There remains a need to increase the diagnostic lead time and to target treatment to patients with significant disease. One possible approach to overcome the limitations of PSA is to screen men for the molecular signature of early PCA, monitor the rate of disease progression and target treatment to patients who are likely to benefit from it.

View Article and Find Full Text PDF

Background: Early screening for prostate cancer (PCA) remains controversial because of overdiagnosis and overtreatment of clinically insignificant cancers. Even though a number of diagnostic tests have been developed to improve on PSA testing, there remains a need for a more informative non-invasive test for PCA. The objective of this study is to identify a panel of DNA methylation markers suitable for a non-invasive diagnostic test from urine DNA collected following a digital rectal exam (DRE) and/or from first morning void (FV).

View Article and Find Full Text PDF

Background: Men with a negative first prostate biopsy will undergo one or more additional biopsies if they remain at high suspicion of prostate cancer. To date, there are no diagnostic tests capable of identifying patients at risk for a positive diagnosis with the predictive power needed to eliminate unnecessary repeat biopsies. Efforts to develop clinical tests using the epigenetic signature of cores recovered from first biopsies have been limited to a few markers and lack the sensitivity and specificity needed for widespread clinical adoption.

View Article and Find Full Text PDF

Rapid expansion of available data, both phenotypic and genotypic, for multiple strains of mice has enabled the development of new methods to interrogate the mouse genome for functional genetic perturbations. In silico mapping provides an expedient way to associate the natural diversity of phenotypic traits with ancestrally inherited polymorphisms for the purpose of dissecting genetic traits. In mouse, the current single nucleotide polymorphism (SNP) data have lacked the density across the genome and coverage of enough strains to properly achieve this goal.

View Article and Find Full Text PDF

The karyotype of the African malaria mosquito Anopheles gambiae contains two pairs of autosomes and a pair of sex chromosomes. The Y chromosome, constituting approximately 10% of the genome, remains virtually unexplored, despite the recent completion of the A. gambiae genome project.

View Article and Find Full Text PDF

We report a whole-genome shotgun assembly (called WGSA) of the human genome generated at Celera in 2001. The Celera-generated shotgun data set consisted of 27 million sequencing reads organized in pairs by virtue of end-sequencing 2-kbp, 10-kbp, and 50-kbp inserts from shotgun clone libraries. The quality-trimmed reads covered the genome 5.

View Article and Find Full Text PDF

DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate genes for developmental diseases including autism.

View Article and Find Full Text PDF

Comparison of the genomes and proteomes of the two diptera Anopheles gambiae and Drosophila melanogaster, which diverged about 250 million years ago, reveals considerable similarities. However, numerous differences are also observed; some of these must reflect the selection and subsequent adaptation associated with different ecologies and life strategies. Almost half of the genes in both genomes are interpreted as orthologs and show an average sequence identity of about 56%, which is slightly lower than that observed between the orthologs of the pufferfish and human (diverged about 450 million years ago).

View Article and Find Full Text PDF

Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs.

View Article and Find Full Text PDF

The high degree of similarity between the mouse and human genomes is demonstrated through analysis of the sequence of mouse chromosome 16 (Mmu 16), which was obtained as part of a whole-genome shotgun assembly of the mouse genome. The mouse genome is about 10% smaller than the human genome, owing to a lower repetitive DNA content. Comparison of the structure and protein-coding potential of Mmu 16 with that of the homologous segments of the human genome identifies regions of conserved synteny with human chromosomes (Hsa) 3, 8, 12, 16, 21, and 22.

View Article and Find Full Text PDF

A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.

View Article and Find Full Text PDF

The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation.

View Article and Find Full Text PDF

We report on the quality of a whole-genome assembly of Drosophila melanogaster and the nature of the computer algorithms that accomplished it. Three independent external data sources essentially agree with and support the assembly's sequence and ordering of contigs across the euchromatic portion of the genome. In addition, there are isolated contigs that we believe represent nonrepetitive pockets within the heterochromatin of the centromeres.

View Article and Find Full Text PDF

Background: Two genes responsible for hereditary breast cancer (BRCA1 and BRCA2) have been identified, and predisposing mutations identified. Several studies have provided evidence that germline mutations in BRCA1 and BRCA2 confer an increased risk of prostate cancer. Based on these findings, one might expect to find an increased frequency of mutations in these genes in family clusters of prostate cancer.

View Article and Find Full Text PDF

Over 200,000 new prostate cancer cases are diagnosed in the United States each year, accounting for more than 35% of all cancer cases affecting men, and resulting in 40,000 deaths annually. Attempts to characterize genes predisposing to prostate cancer have been hampered by a high phenocopy rate, the late age of onset of the disease and, in the absence of distinguishing clinical features, the inability to stratify patients into subgroups relative to suspected genetic locus heterogeneity. We previously performed a genome-wide search for hereditary prostate cancer (HPC) genes, finding evidence of a prostate cancer susceptibility locus on chromosome 1 (termed HPC1; ref.

View Article and Find Full Text PDF

The long arm of chromosome 10 is frequently affected by allelic loss in prostate cancer. PTEN/MMAC1, a candidate tumor suppressor gene located at 10q23.3, a region commonly deleted in prostate cancer, was recently identified and found to be deleted or mutated in cancer cell lines derived from a variety of human tissues including prostate.

View Article and Find Full Text PDF

Despite its high prevalence, very little is known regarding genetic predisposition to prostate cancer. A genome-wide scan performed in 66 high-risk prostate cancer families has provided evidence of linkage to the long arm of chromosome 1 (1q24-25). Analysis of an additional set of 25 North American and Swedish families with markers in this region resulted in significant evidence of linkage in the combined set of 91 families.

View Article and Find Full Text PDF

Genetic analysis of cell-cell signaling in Saccharomyces cerevisiae has led to the identification of a novel factor, known as Sst2p, that promotes recovery after pheromone-induced growth arrest (R. K. Chan and C.

View Article and Find Full Text PDF