Entropy (Basel)
February 2019
The purpose of this paper was to choose an appropriate information dissimilarity measure for hierarchical clustering of daily streamflow discharge data, from twelve gauging stations on the Brazos River in Texas (USA), for the period 1989-2016. For that purpose, we selected and compared the average-linkage clustering hierarchical algorithm based on the compression-based dissimilarity measure (NCD), permutation distribution dissimilarity measure (PDDM), and Kolmogorov distance (KD). The algorithm was also compared with K-means clustering based on Kolmogorov complexity (KC), the highest value of Kolmogorov complexity spectrum (KCM), and the largest Lyapunov exponent (LLE).
View Article and Find Full Text PDF