J Agric Food Chem
December 2024
To understand the impact of different types of polyphenol-starch complexes on digestibility and gut microbiota, caffeic acid (CA) and corn starch (CS) complexes were prepared by coheating and high-pressure homogenization. The resistant starch content in CS coheated with CA (HCS-CA) and HCS-CA after high-pressure homogenization (HCS-CA-HPH) was 47.75 and 56.
View Article and Find Full Text PDFA fiber-rich diet is considered beneficial for gut health. An inflamed gut with a dysbiotic bacterial community can result in altered fiber metabolism depending on the fiber's physicochemical properties. This study examined the effect of fiber's physicochemical properties on fiber fermentation in the presence of healthy and colitis-associated bacteria.
View Article and Find Full Text PDFThe modern diet delivers nearly equal amounts of carbohydrates and protein into the colon representing an important protein increase compared to past higher fiber diets. At the same time, plant-based protein foods have become increasingly popular, and these sources of protein are generally less digestible than animal protein sources. As a result, a significant amount of protein is expected to reach the colon and be available for fermentation by gut microbiota.
View Article and Find Full Text PDFHeavy metal exposure is a growing concern due to its adverse effects on human health, including the disruption of gut microbiota composition and function. Dietary fibers have been shown to positively impact the gut microbiota and could mitigate some of the heavy metal negative effects. This study aimed to investigate the effects of different heavy metals (As, Cd and Hg in different concentrations) on gut microbiota in the presence and absence of different dietary fibers that included fructooligosaccharides, pectin, resistant starch, and wheat bran.
View Article and Find Full Text PDFInsoluble plant cell walls are a main source of dietary fiber. Both chemical and physical fiber structures create distinct niches for gut bacterial utilization. Here, we have taken key fermentable solubilized polysaccharides of plant cell walls and fabricated them back into cell wall-like film forms to understand how fiber physical structure directs gut bacterial fermentation outcomes.
View Article and Find Full Text PDFMost dietary fibers used to shape the gut microbiota present different and unpredictable responses, presumably due to the diverse microbial communities of people. Recently, we proposed that fibers can be classified in a hierarchical way where fibers of high specificity (i.e.
View Article and Find Full Text PDF