We investigate a spherically symmetric exact solution of Einstein's gravity with cosmological constant in (2 + 1) dimensions, non-minimally coupled to a scalar field. The solution describes the gravitational field of a black hole, which is free of curvature singularities in the entire spacetime. We use the formalism of geometrothermodynamics to investigate the geometric properties of the corresponding space of equilibrium states and find their interpretation from the point of view of thermodynamics.
View Article and Find Full Text PDFWe consider a particular isotropic and homogeneous cosmological model, in which the equation of state is obtained from a thermodynamic fundamental equation by using the formalism of geometrothermodynamics (GTD). The model depends effectively on three arbitrary constants, which can be fixed to reproduce the main aspects of the inflationary era and the ΛCDM paradigm. We use GTD to analyze the geometric properties of the corresponding equilibrium space and to derive the stability properties and phase transition structure of the cosmological model.
View Article and Find Full Text PDF