Background: Repetitive electrically-evoked muscle contractions lead to the early onset of muscle fatigue. This study assessed the relationship between muscle mechanomyography (%RMS-MMG) and tissue oxygen saturation (%TSI) in extensor carpi radialis (ECR) during electrically-evoked fatiguing exercise in individuals with tetraplegia.
Methods: Skin-surface mechanomyography (MMG) and near-infrared spectroscopy (NIRS) sensors were placed on the ECR of seven individuals with tetraplegia.
This study compared muscle oxygenation (StO2) during arm cranking (ACE), functional electrical stimulation-evoked leg cycling (FES-LCE), and hybrid (ACE+FES-LCE) exercise in spinal cord injury individuals. Eight subjects with C7-T12 lesions performed exercises at 3 submaximal intensities. StO2 was measured during rest and exercise at 40%, 60%, and 80% of subjects' oxygen uptake (VO2) peak using near-infrared spectroscopy.
View Article and Find Full Text PDFRepetitive electrically-evoked muscle contraction leads to accelerated muscle fatigue. This study assessed electrically-evoked fatiguing muscle with changes to mechanomyography root mean square percentage (%RMS-MMG) and tissue saturation index (%TSI) in extensor carpi radialis. Forty healthy volunteers (n=40) performed repetitive electrical-evoked wrist extension to fatigue and results were analyzed pre- and post-fatigue, i.
View Article and Find Full Text PDF