Int J Mol Sci
November 2024
The metabolism of zinc and manganese plays a pivotal role in cancer progression by mediating cancer cell growth and metastasis. The SLC30A family proteins and mediate the efflux of zinc, manganese, and probably other transition element ions outside the cytoplasm to the extracellular space or into intracellular membrane compartments. The SLC39A family members and are their functional antagonists that transfer these ions into the cytoplasm.
View Article and Find Full Text PDFIndividual gene expression and molecular pathway activation profiles were shown to be effective biomarkers in many cancers. Here, we used the human interactome model to algorithmically build 7470 molecular pathways centered around individual gene products. We assessed their associations with tumor type and survival in comparison with the previous generation of molecular pathway biomarkers (3022 "classical" pathways) and with the RNA transcripts or proteomic profiles of individual genes, for 8141 and 1117 samples, respectively.
View Article and Find Full Text PDFRegardless of the presence or absence of specific diagnostic mutations, many cancer patients fail to respond to EGFR-targeted therapeutics, and a personalized approach is needed to identify putative (non)responders. We found previously that human peripheral blood and EGF can modulate the activities of EGFR-specific drugs on inhibiting clonogenity in model EGFR-positive A431 squamous carcinoma cells. Here, we report that human serum can dramatically abolish the cell growth rate inhibition by EGFR-specific drugs cetuximab and erlotinib.
View Article and Find Full Text PDFSorafenib is a tyrosine kinase inhibitory drug with multiple molecular specificities that is approved for clinical use in second-line treatments of metastatic and advanced renal cell carcinomas (RCCs). However, only 10-40% of RCC patients respond on sorafenib-containing therapies, and personalization of its prescription may help in finding an adequate balance of clinical efficiency, cost-effectiveness, and side effects. We investigated whether expression levels of known molecular targets of sorafenib in RCC can serve as prognostic biomarker of treatment response.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
September 2021
Analysis of molecular pathway activation is the recent instrument that helps to quantize activities of various intracellular signaling, structural, DNA synthesis and repair, and biochemical processes. This may have a deep impact in fundamental research, bioindustry, and medicine. Unlike gene ontology analyses and numerous qualitative methods that can establish whether a pathway is affected in principle, the quantitative approach has the advantage of exactly measuring the extent of a pathway up/downregulation.
View Article and Find Full Text PDFMultiple myeloma (MM) affects ~500,000 people and results in ~100,000 deaths annually, being currently considered treatable but incurable. There are several MM chemotherapy treatment regimens, among which eleven include bortezomib, a proteasome-targeted drug. MM patients respond differently to bortezomib, and new prognostic biomarkers are needed to personalize treatments.
View Article and Find Full Text PDFDNA repair can prevent mutations and cancer development, but it can also restore damaged tumor cells after chemo and radiation therapy. We performed RNA sequencing on 95 human pathological thyroid biosamples including 17 follicular adenomas, 23 follicular cancers, 3 medullar cancers, 51 papillary cancers and 1 poorly differentiated cancer. The gene expression profiles are annotated here with the clinical and histological diagnoses and, for papillary cancers, with gene V600E mutation status.
View Article and Find Full Text PDFRNA sequencing is considered the gold standard for high-throughput profiling of gene expression at the transcriptional level. Its increasing importance in cancer research and molecular diagnostics is reflected in the growing number of its mentions in scientific literature and clinical trial reports. However, the use of different reagents and protocols for RNA sequencing often produces incompatible results.
View Article and Find Full Text PDFInevitable recurrence after radiochemotherapy is the major problem in the treatment of glioblastoma, the most prevalent type of adult brain malignancy. Glioblastomas are notorious for a high degree of intratumor heterogeneity manifest through a diversity of cell types and molecular patterns. The current paradigm of understanding glioblastoma recurrence is that cytotoxic therapy fails to target effectively glioma stem cells.
View Article and Find Full Text PDFIn the article 'Retroelement-Linked Transcription Factor Binding Patterns Point to Quickly Developing Molecular Pathways in Human Evolution,' a number of transcription factor binding sites (TFBS) mapped on all retroelement classes were incorrectly calculated as sum of TFBS numbers separately mapped on LINEs, SINEs and LTR retrotransposons/endogenous retroviruses (LR/ERVs) [...
View Article and Find Full Text PDFComprehensive analysis of molecular pathology requires a collection of reference samples representing normal tissues from healthy donors. For the available limited collections of normal tissues from postmortal donors, there is a problem of data incompatibility, as different datasets generated using different experimental platforms often cannot be merged in a single panel. Here, we constructed and deposited the gene expression database of normal human tissues based on uniformly screened original sequencing data.
View Article and Find Full Text PDFRetroelements (REs) are transposable elements occupying ~40% of the human genome that can regulate genes by providing transcription factor binding sites (TFBS). RE-linked TFBS profile can serve as a marker of gene transcriptional regulation evolution. This approach allows for interrogating the regulatory evolution of organisms with RE-rich genomes.
View Article and Find Full Text PDFNeuroblastoma is a pediatric cancer arising from sympathetic nervous system. Remarkable heterogeneity in outcomes is one of its widely known features. One of the traits strongly associated with the unfavorable subtype is the amplification of oncogene .
View Article and Find Full Text PDFHigh throughput technologies opened a new era in biomedicine by enabling massive analysis of gene expression at both RNA and protein levels. Unfortunately, expression data obtained in different experiments are often poorly compatible, even for the same biologic samples. Here, using experimental and bioinformatic investigation of major experimental platforms, we show that aggregation of gene expression data at the level of molecular pathways helps to diminish cross- and intra-platform bias otherwise clearly seen at the level of individual genes.
View Article and Find Full Text PDFCell Cycle
December 2016
MicroRNAs (miRs) are short noncoding RNA molecules that regulate expression of target mRNAs. Many published sources provide information about miRs and their targets. However, bioinformatic tools elucidating higher level impact of the established total miR profiles, are still largely missing.
View Article and Find Full Text PDFMelanoma is the most aggressive and dangerous type of skin cancer, but its molecular mechanisms remain largely unclear. For transcriptomic data of 478 primary and metastatic melanoma, nevi and normal skin samples, we performed high-throughput analysis of intracellular molecular networks including 592 signaling and metabolic pathways. We showed that at the molecular pathway level, the formation of nevi largely resembles transition from normal skin to primary melanoma.
View Article and Find Full Text PDFA new generation of anticancer therapeutics called target drugs has quickly developed in the 21st century. These drugs are tailored to inhibit cancer cell growth, proliferation, and viability by specific interactions with one or a few target proteins. However, despite formally known molecular targets for every "target" drug, patient response to treatment remains largely individual and unpredictable.
View Article and Find Full Text PDFWe recently proposed a new bioinformatic algorithm called OncoFinder for quantifying the activation of intracellular signaling pathways. It was proved advantageous for minimizing errors of high-throughput gene expression analyses and showed strong potential for identifying new biomarkers. Here, for the first time, we applied OncoFinder for normal and cancerous tissues of the human bladder to identify biomarkers of bladder cancer.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) are a class of small RNAs that regulate gene expression. They are aberrantly expressed in many human cancers and are potential therapeutic targets and molecular biomarkers.
Methods: In this study, we for the first time validated the reported data on the entire set of published differential miRNAs (102 in total) through a series of transcriptome-wide experiments.
Using a systematic, whole-genome analysis of enhancer activity of human-specific endogenous retroviral inserts (hsERVs), we identified an element, hsERVPRODH, that acts as a tissue-specific enhancer for the PRODH gene, which is required for proper CNS functioning. PRODH is one of the candidate genes for susceptibility to schizophrenia and other neurological disorders. It codes for a proline dehydrogenase enzyme, which catalyses the first step of proline catabolism and most likely is involved in neuromediator synthesis in the CNS.
View Article and Find Full Text PDFGenome-wide methylation studies frequently lack adequate controls to estimate proportions of background reads in the resulting datasets. To generate appropriate control pools, we developed technique termed nMETR (non-methylated tag recovery) based on digestion of genomic DNA with methylation-sensitive restriction enzyme, ligation of adapter oligonucleotide and PCR amplification of non-methylated sites associated with genomic repetitive elements. The protocol takes only two working days to generate amplicons for deep sequencing.
View Article and Find Full Text PDF