Publications by authors named "Nurselin Ates"

Background: Tay-Sachs disease is a neurodegenerative disorder characterized by a build-up of GM2 ganglioside in the brain, which results in progressive central nervous system dysfunction. Our group recently generated Hexa-/-Neu3-/- mice, a murine model with neuropathological abnormalities similar to the infantile form of Tay-Sachs disease. Previously, we reported progressive neurodegeneration with neuronal loss in the brain sections of Hexa-/-Neu3-/- mice.

View Article and Find Full Text PDF

Tay-Sachs disease is a lethal lysosomal storage disorder caused by mutations in the HexA gene encoding the α subunit of the lysosomal β-hexosaminidase enzyme (HEXA). Abnormal GM2 ganglioside accumulation causes progressive deterioration in the central nervous system in Tay-Sachs patients. Hexa-/- mouse model failed to display abnormal phenotype.

View Article and Find Full Text PDF

Background: Tay-Sachs disease (TSD), a type of GM2-gangliosidosis, is a progressive neurodegenerative lysosomal storage disorder caused by mutations in the α subunit of the lysosomal β-hexosaminidase enzyme. This disease is characterized by excessive accumulation of GM2 ganglioside, predominantly in the central nervous system. Although Tay-Sachs patients appear normal at birth, the progressive accumulation of undegraded GM2 gangliosides in neurons leads to death.

View Article and Find Full Text PDF

Tay-Sachs disease is a severe lysosomal storage disorder caused by mutations in Hexa, the gene that encodes for the α subunit of lysosomal β-hexosaminidase A (HEXA), which converts GM2 to GM3 ganglioside. Unexpectedly, Hexa mice have a normal lifespan and show no obvious neurological impairment until at least one year of age. These mice catabolize stored GM2 ganglioside using sialidase(s) to remove sialic acid and form the glycolipid GA2, which is further processed by β-hexosaminidase B.

View Article and Find Full Text PDF