We describe the coding-complete genome sequence of a strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) obtained from a patient with symptoms of coronavirus disease 2019 (COVID-19), detected in the Republic of Kazakhstan. According to the Pangolin COVID-19 database, the studied strain, SARS-CoV-2/Human/KAZ/Delta-020/2021, belongs to lineage AY.122 and consists of 29,840 nucleotides.
View Article and Find Full Text PDFVaccination with live attenuated vaccines is a key element in the prevention of lumpy skin disease. The mechanism of virus attenuation by long-term passaging in sensitive systems remains unclear. Targeted inactivation of virulence genes is the most promising way to obtain attenuated viruses.
View Article and Find Full Text PDFTicks carry and transmit a wide variety of pathogens (bacteria, viruses and protozoa) that pose a threat to humans and animals worldwide. The purpose of this work was to study ticks collected in different regions of Kazakhstan for the carriage of various pathogens. The collected ticks were examined by PCR for the carriage of various pathogens.
View Article and Find Full Text PDFHere, we reported the complete coding sequence of the influenza A/equine/Otar/3/2007 (H3N8) equine virus, first isolated in Kazakhstan in 2007. The hemagglutinin (HA) sequences of the Kazakhstan isolates appeared to be closely related to viruses isolated in early 2000 in Asia. Phylogenetic analysis characterized the Kazakhstan isolates as a member of the Florida sublineage clade 2 by the HA protein sequence.
View Article and Find Full Text PDFCrimean-Congo hemorrhagic fever (CCHF) disease cases are registered annually in endemic regions of Kazakhstan. To study the prevalence of various Crimean-Congo hemorrhagic fever virus (CCHFV) genotypes, a total of 694 ticks were collected from southern regions of Kazakhstan in 2021. ( = 323) (46.
View Article and Find Full Text PDFAn active surveillance study of avian influenza viruses (AIVs) in wild birds was carried out in Kazakhstan in 2018-2019. In total, 866 samples were collected from wild birds and analyzed for influenza viruses using molecular and virological tests. Genome segments of Asian, European, and Australian lineages were detected in 25 (4.
View Article and Find Full Text PDFIn March 2020, the first cases of the human coronavirus disease COVID-19 were registered in Kazakhstan. We isolated the SARS-CoV-2 virus from clinical materials from some of these patients. Subsequently, a whole virion inactivated candidate vaccine, QazCovid-in, was developed based on this virus.
View Article and Find Full Text PDFCapripoxviruses with a host range limited to ruminants have the great potential to be used as vaccine vectors. The aim of this work was to evaluate attenuated sheep pox virus (SPPV) vaccine strain NISKHI as a vector expressing several genes. Open reading frames SPPV020 (ribonucleotide kinase) and SPPV066 (thymidine kinase) were selected as sites for the insertion of foreign genes.
View Article and Find Full Text PDFWe report the complete coding genome sequence of the influenza A/H3N8 virus, isolated from in northern Kazakhstan in 2018. Phylogenetic analysis of the surface antigens of strain A/garganey/North-Kazakhstan/45/2018 showed that its hemagglutinin belonged to the Asian line, while its neuraminidase was assigned to the Eurasian group.
View Article and Find Full Text PDFWe report the near-complete genome sequence of an influenza H5N1 virus strain isolated from a dead swan on the southeastern Caspian seashore in 2006. The results of the surface protein HA phylogenetic analysis showed that the A/swan/Mangystau/3/2006 virus belongs to the EA-nonGsGD clade.
View Article and Find Full Text PDFBackground: We developed a new oligonucleotide microarray comprising 16 identical subarrays for simultaneous rapid detection of avian viruses: avian influenza virus (AIV), Newcastle disease virus (NDV), infection bronchitis virus (IBV), and infectious bursal disease virus (IBDV) in single- and mixed-virus infections. The objective of the study was to develop an oligonucleotide microarray for rapid diagnosis of avian diseases that would be used in the course of mass analysis for routine epidemiological surveillance owing to its ability to test one specimen for several infections.
Methods And Results: The paper describes the technique for rapid and simultaneous diagnosis of avian diseases such as avian influenza, Newcastle disease, infectious bronchitis and infectious bursal disease with use of oligonucleotide microarray, conditions for hybridization of fluorescent-labelled viral cDNA on the microarray and its specificity tested with use of AIV, NDV, IBV, IBDV strains as well as biomaterials from poultry.