Aims/hypothesis: Membrane phospholipids are the major intracellular source for fatty acid-derived mediators, which regulate myriad cell functions. We showed previously that high glucose levels triggered the hydrolysis of polyunsaturated fatty acids from beta cell phospholipids. These fatty acids were subjected to free radical-catalysed peroxidation to generate the bioactive aldehyde 4-hydroxy-2E-nonenal (4-HNE).
View Article and Find Full Text PDFVascular endothelial cell (VEC) senescence is considered an early event in the development of atherosclerotic lesions. Stressful stimuli, in particular oxidative stress, have been linked to premature senescence in the vasculature. Foam cells are a major source of reactive oxygen species and may play a role in the induction of VEC senescence; hence, we investigated their involvement in the induction of VEC senescence in a co-culture transwell system.
View Article and Find Full Text PDFPeroxidation of polyunsaturated fatty acids is intensified in cells subjected to oxidative stress and results in the generation of various bioactive compounds, of which 4-hydroxyalkenals are prominent. During the progression of type 2 diabetes mellitus, the ensuing hyperglycemia promotes the generation of reactive oxygen species (ROS) that contribute to the development of diabetic complications. It has been suggested that ROS-induced lipid peroxidation and the resulting 4-hydroxyalkenals markedly contribute to the development and progression of these pathologies.
View Article and Find Full Text PDFPancreatic β-cell dysfunction is central in diabetes. The diabetic milieu may impair proinsulin folding, leading to β-cell endoplasmic reticulum (ER) stress and apoptosis, and thus a worsening of the diabetes. Autophagy is crucial for the well-being of the β-cell; however, the impact of stimulating autophagy on β-cell adaptation to ER stress is unknown.
View Article and Find Full Text PDFAccumulation of misfolded proinsulin in the β-cell leads to dysfunction induced by endoplasmic reticulum (ER) stress, with diabetes as a consequence. Autophagy helps cellular adaptation to stress via clearance of misfolded proteins and damaged organelles. We studied the effects of proinsulin misfolding on autophagy and the impact of stimulating autophagy on diabetes progression in Akita mice, which carry a mutation in proinsulin, leading to its severe misfolding.
View Article and Find Full Text PDFInsulin deficiency is the underlying cause of hyperglycemia in type 2 diabetes. The gerbil Psammomys obesus (P. obesus) is a naturally insulin resistant rodent with tendency to develop diet-induced hyperglycemia associated with obesity.
View Article and Find Full Text PDFThioredoxin-interacting protein (TXNIP) regulates critical biological processes including inflammation, stress and apoptosis. TXNIP is upregulated by glucose and is a critical mediator of hyperglycemia-induced beta-cell apoptosis in diabetes. In contrast, the saturated long-chain fatty acid palmitate, although toxic to the beta-cell, inhibits TXNIP expression.
View Article and Find Full Text PDFObjective: Previous studies show that polyunsaturated fatty acids (PUFAs) increase the insulin secretory capacity of pancreatic β-cells. We aimed at identifying PUFA-derived mediators and their cellular targets that are involved in the amplification of insulin release from β-cells preexposed to high glucose levels.
Research Design And Methods: The content of fatty acids in phospholipids of INS-1E β-cells was determined by lipidomics analysis.
Type 2 diabetic patients are insulin resistant as a result of obesity and a sedentary lifestyle. Nevertheless, it has been known for the past five decades that insulin response to nutrients is markedly diminished in type 2 diabetes. There is now a consensus that impaired glucose regulation cannot develop without insulin deficiency.
View Article and Find Full Text PDFBackground: Palmitate is a potent inducer of endoplasmic reticulum (ER) stress in beta-cells. In type 2 diabetes, glucose amplifies fatty-acid toxicity for pancreatic beta-cells, leading to beta-cell dysfunction and death. Why glucose exacerbates beta-cell lipotoxicity is largely unknown.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2009
The pancreatic beta-cell adapts to increased nutrient availability and insulin resistance by increasing its function and mass. These processes are orchestrated by signals derived from nutrient metabolism, hormones and cytokines. Their end-result is the regulation of insulin secretion and biosynthesis, and beta-cell proliferation and apoptosis.
View Article and Find Full Text PDFObjective: To evaluate the accumulation pattern of intramyocellular lipids (IMCLs) in striated muscle during the development and progression of diabetes, using a novel scanning electron microscopic method.
Methods And Procedures: Hyperglycemia was induced by feeding diabetes-prone (DP) Psammomys obesus a high-energy (HE) diet. Lipid accumulation within gastrocnemius muscle fibers was assessed in formalin-fixed muscle samples during the development of hyperglycemia using high resolution imaging in a scanning electron microscope.
Objective: Mammalian target of rapamycin (mTOR) and its downstream target S6 kinase 1 (S6K1) mediate nutrient-induced insulin resistance by downregulating insulin receptor substrate proteins with subsequent reduced Akt phosphorylation. Therefore, mTOR/S6K1 inhibition could become a therapeutic strategy in insulin-resistant states, including type 2 diabetes. We tested this hypothesis in the Psammomys obesus (P.
View Article and Find Full Text PDFObjective: The Cohen diabetes-sensitive rat develops postprandial hyperglycemia when fed a high-sucrose, copper-poor diet, whereas the Cohen diabetes-resistant rat maintains normoglycemia. The pathophysiological basis of diabetes was studied in the Cohen diabetic rat centering on the interplay between the exocrine and endocrine compartments of the pancreas.
Research Design And Methods: Studies used male Cohen diabetes-sensitive and Cohen diabetes-resistant rats fed 1-month high-sucrose, copper-poor diet.
We investigated the metabolic and genetic basis of diabetes in the Cohen Diabetic rat, a model of diet-induced diabetes, as a means to identify the molecular mechanisms involved. By altering individual components in the diabetogenic diet, we established that the dietary susceptibility that leads to the development of diabetes in this model is directly related to the high casein and low copper content in chow. The development of diabetes is accompanied by depletion of the acini from the exocrine pancreas and replacement with fat cells, while the appearance of the islets of Langerhans remains intact.
View Article and Find Full Text PDFSuccinate stimulates insulin secretion and proinsulin biosynthesis. We studied the effects of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-modulating pathways on glucose- and succinate-stimulated insulin secretion and proinsulin biosynthesis in the rat and the insulin-resistant Psammomys obesus. Disruption of the anaplerotic pyruvate/malate shuttle by phenylacetic acid inhibited glucose- and succinate-stimulated insulin secretion and succinate-stimulated proinsulin biosynthesis in both species.
View Article and Find Full Text PDFType 2 diabetes is characterized by insulin resistance and progressive beta-cell failure. Deficient insulin secretion, with increased proportions of insulin precursor molecules, is a common feature of type 2 diabetes; this could result from inappropriate beta-cell function and/or reduced beta-cell mass. Most studies using tissues from diabetic patients are retrospective, providing only limited information on the relative contribution of beta-cell dysfunction versus decreased beta-cell mass to the "beta-cell failure" of type 2 diabetes.
View Article and Find Full Text PDFSubstrate autoregulation of glucose transporter-1 (GLUT-1) mRNA and protein expression provides vascular endothelial and smooth muscle cells a sensitive mechanism to adapt their rate of glucose transport in response to changing glycemic conditions. Hyperglycemia-induced downregulation of glucose transport is particularly important in protecting these cells against an excessive influx of glucose and consequently increased intracellular protein glycation and generation of free radicals; both are detrimental in the development of vascular disease in diabetes. We aimed to investigate the molecular mechanism of high glucose-induced downregulation of GLUT-1 mRNA expression in primary bovine aortic vascular endothelial (VEC) and smooth muscle (VSMC) cell cultures.
View Article and Find Full Text PDFS 21403 (mitiglinide) is a new drug for type 2 diabetes mellitus (T2DM). Its action on insulin release and biosynthesis was investigated in several experimental systems utilizing pancreas from normal and T2DM animals. At high concentrations (10 microM), S 21403, like classical sulphonylurea, induced insulin release in the absence of glucose.
View Article and Find Full Text PDFRecent studies ascribe a major role to pancreatic beta-cell loss in type 2 diabetes. We investigated the dynamics of beta-cell mass during diabetes evolution in Psammomys obesus, a model for nutrition-dependent type 2 diabetes, focusing on the very early and the advanced stages of the disease. P.
View Article and Find Full Text PDFIt has recently been suggested that insulin augments its own production by a physiologically important feed-forward autocrine loop. We studied the kinetics of glucose-regulated proinsulin gene expression and proinsulin biosynthesis in normal rat islets with emphasis on the potential role of insulin as a mediator of the glucose effect. There was a time-dependent increase in steady-state proinsulin mRNA in islets cultured at 16.
View Article and Find Full Text PDFJ Pediatr Endocrinol Metab
January 2003
Type 2 diabetes mellitus is increasing worldwide with a trend of declining age of onset. It is characterized by insulin resistance and a progressive loss of beta-cell function. The ability to secrete adequate amounts of insulin is determined by the functional integrity of beta-cells and their overall mass.
View Article and Find Full Text PDFIn type 2 diabetes, chronic hyperglycemia is suggested to be detrimental to pancreatic beta cells, causing impaired insulin secretion. IL-1beta is a proinflammatory cytokine acting during the autoimmune process of type 1 diabetes. IL-1beta inhibits beta cell function and promotes Fas-triggered apoptosis in part by activating the transcription factor NF-kappaB.
View Article and Find Full Text PDF