Technol Health Care
November 2010
Climate chambers have been widely used in in vitro and in vivo studies which require controlled environmental temperature and humidity conditions. This article describes a new desktop climate chamber that was developed for application of respiratory airflows on cultured nasal epithelial cells (NEC) under controlled temperature and humidity conditions. Flow experiments were performed by connecting the climate chamber to an airflow generator via a flow chamber with cultured NEC.
View Article and Find Full Text PDFThe nasal epithelium is continuously subjected to wall shear stresses (WSS) induced by respiratory airflows. An in vitro experimental model was developed to expose nasal epithelial cells cultured under air-liquid interface conditions to steady airflow-induced WSS. Mucus secretion from epithelial goblet cells was quantified using an enzyme-linked lectinosorbent assay, and modifications of the cytoskeletal structure were qualitatively evaluated from fluorescent stains of actin and beta-tubulin fibers.
View Article and Find Full Text PDFModern sport shoes are designed to attenuate mechanical stress waves, mainly through deformation of the viscoelastic midsole which is typically made of ethylene vinyl acetate (EVA) foam. Shock absorption is obtained by flow of air through interconnected air cells in the EVA during shoe deformation under body-weight. However, when the shoe is overused and air cells collapse or thickness of the EVA is reduced, shock absorption capacity may be affected, and this may contribute to running injuries.
View Article and Find Full Text PDFThe effects of mechanical stimuli such as wall shear stresses (WSS) on cellular processes have been studied in vitro in numerous cell types. In order to study WSS effects on cells cultured under air-liquid interface (ALI) conditions, we developed a custom-designed well that can be disassembled into sub-units that allow installation of the cultured cells in a flow chamber, and then, re-assembled for further incubation or biological tests. Human nasal epithelial cells were cultured in the new wells under ALI conditions, and some of their biological characteristics were compared with those cultured in commercial Millicells.
View Article and Find Full Text PDF