Publications by authors named "Nurit Adiram-Filiba"

The microperoxidase-11 hemopeptide exhibits configuration-dependent selectivity for guanine-quadruplexes by specifically uncaging c-MYC guanine-quadruplexes from a duplex DNA.

View Article and Find Full Text PDF

Protein immobilization on material surfaces is emerging as a powerful tool in the design of devices and active materials for biomedical and pharmaceutical applications as well as for catalysis. Preservation of the protein's biological functionality is crucial to the design process and is dependent on the ability to maintain its structural and dynamical integrity while removed from the natural surroundings. The scientific techniques to validate the structure of immobilized proteins are scarce and usually provide limited information as a result of poor resolution.

View Article and Find Full Text PDF

Silicon is absorbed by plant roots as silicic acid. The acid moves with the transpiration stream to the shoot, and mineralizes as silica. In grasses, leaf epidermal cells called silica cells deposit silica in most of their volume using an unknown biological factor.

View Article and Find Full Text PDF

Many life forms generate intricate submicron biosilica structures with various important biological functions. The formation of such structures, from the silicic acid in the waters and in the soil, is thought to be regulated by unique proteins with high repeats of specific amino acids and unusual sidechain modifications. Some silicifying proteins are characterized by high prevalence of basic amino acids in their primary structures.

View Article and Find Full Text PDF

Deriving the conformation of adsorbed proteins is important in the assessment of their functional activity when immobilized. This has particularly important bearings on the design of contemporary and new encapsulated enzyme-based drugs, biosensors, and other bioanalytical devices. Solid-state nuclear magnetic resonance (NMR) measurements can expand our molecular view of proteins in this state and of the molecular interactions governing protein immobilization on popular biocompatible surfaces such as silica.

View Article and Find Full Text PDF