Skyrmions can be envisioned as bits of information that can be transported along nanoracetracks. However, temperature, defects, and/or granularity can produce diffusion, pinning, and, in general, modification in their dynamics. These effects may cause undesired errors in information transport.
View Article and Find Full Text PDFControlling magnetism, essential for a wide range of technologies, is impaired by the impossibility of generating a maximum of magnetic field in free space. Here, we propose a strategy based on negative permeability to overcome this stringent limitation. We experimentally demonstrate that an active magnetic metamaterial can emulate the field of a straight current wire at a distance.
View Article and Find Full Text PDFMagnetic skyrmions are promising candidates as information carriers in spintronic devices. The transport of individual skyrmions in a fast and controlled way is a key issue in this field. Here we introduce a platform for accelerating, guiding and compressing skyrmions along predefined paths.
View Article and Find Full Text PDFSuperconductors are essential in many present and future technologies, from large-scale devices for medical imaging, accelerators, or fusion experiments to ultra-low-power superconducting electronics. However, their potential applicability, and particularly that of high-temperature superconductors (HTS), is severely affected by limited performances at large magnetic fields and high temperatures, where their use is most needed. One of the main reasons for these limitations is the presence of quantized vortices, whose movements result in losses, internal noise, and reduced performances.
View Article and Find Full Text PDFMagnetic sensors are key elements in our interconnected smart society. Their sensitivity becomes essential for many applications in fields such as biomedicine, computer memories, geophysics, or space exploration. Here we present a universal way of increasing the sensitivity of magnetic sensors by surrounding them with a spherical metamaterial shell with specially designed anisotropic magnetic properties.
View Article and Find Full Text PDF, , are generated by using a completely new and versatile approach based on the combination of superconductivity and magnetism. Robust, stable, and easily controllable complex spin structures are encoded, modified, and annihilated in a continuous magnetic thin film by defining a variety of magnetic states in superconducting dots.
View Article and Find Full Text PDFA new strategy to minimize magnetic interactions between nanowires (NWs) dispersed in a fluid is proposed. Such a strategy consists of preparing trisegmented NWs containing two antiparallel ferromagnetic segments with dissimilar coercivity separated by a nonmagnetic spacer. The trisegmented NWs exhibit a staircase-like hysteresis loop with tunable shape that depends on the relative length of the soft- and hard-magnetic segments and the respective values of saturation magnetization.
View Article and Find Full Text PDFMagnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting potential applications. In addition, the exchange coupling of magnetic vortices to antiferromagnets has also been shown to lead to a range of novel phenomena and functionalities. Here we report a new magnetization reversal mode of magnetic vortices in exchange coupled Ir20Mn80/Fe20Ni80 microdots: distorted viscous vortex reversal.
View Article and Find Full Text PDF