Publications by authors named "Nuria Vigues"

Marine sediments polluted from anthropogenic activities can be major reservoirs of toxic mercury species. Some microorganisms in these environments have the capacity to detoxify these pollutants, by using the mer operon. In this study, we characterized microbial cultures isolated from polluted marine sediments growing under diverse environmental conditions of salinity, oxygen availability and mercury tolerance.

View Article and Find Full Text PDF

The detection of living organisms at very low concentrations is necessary for the early diagnosis of bacterial infections, but it is still challenging as there is a need for signal amplification. Cell culture, nucleic acid amplification, or nanostructure-based signal enhancement are the most common amplification methods, relying on long, tedious, complex, or expensive procedures. Here, we present a cyanotype-based photochemical amplification reaction enabling the detection of low bacterial concentrations up to a single-cell level.

View Article and Find Full Text PDF

In healthcare facilities, environmental microbes are responsible for numerous infections leading to patient's health complications and even death. The detection of the pathogens present on contaminated surfaces is crucial, although not always possible with current microbial detection technologies requiring sample collection and transfer to the laboratory. Based on a simple sonochemical coating process, smart hospital fabrics with the capacity to detect live bacteria by a simple change of colour are presented here.

View Article and Find Full Text PDF

Materials science offers new perspectives in the clinical analysis of antimicrobial sensitivity. However, a biomaterial with the capacity to respond to living bacteria has not been developed to date. We present an electrochromic iron(III)-complexed alginate hydrogel sensitive to bacterial metabolism, here applied to fast antibiotic-susceptibility determination.

View Article and Find Full Text PDF

This paper presents the study of the dynamics of the formation of polymer-assisted highly-orientated polycrystalline cubic structures (CS) by a fractal-mediated mechanism. This mechanism involves the formation of seed Ag@Co nanoparticles by InterMatrix Synthesis and subsequent overgrowth after incubation at a low temperature in chloride and phosphate solutions. These ions promote the dissolution and recrystallization in an ordered configuration of pre-synthetized nanoparticles initially embedded in negatively-charged polymeric matrices.

View Article and Find Full Text PDF

Phenolic compounds are one of the main contaminants of soil and water due to their toxicity and persistence in the natural environment. Their presence is commonly determined with bulky and expensive instrumentation (e.g.

View Article and Find Full Text PDF

A poly(dimethylsiloxane) biophotonic lab-on-a-chip (bioPhLoC) containing two chambers, an incubation chamber and a monitoring chamber for cell retention/proliferation and pH monitoring, respectively, is presented. The bioPhLoC monolithically integrates a filter with 3 μm high size-exclusion microchannels, capable of efficiently trapping cells in the incubation chamber, as well as optical elements for real-time interrogation of both chambers. The integrated optical elements made possible both absorption and dispersion measurements, which were comparable to those made in a commercially available cuvette.

View Article and Find Full Text PDF

This manuscript describes the synthesis (based on the intermatrix synthesis (IMS) method), optimization, and application to bacterial disinfection of Ag@Co polymer-metal nanocomposite materials with magnetic and bactericidal properties. This material showed ideal bactericide features for being applied to bacterial disinfection of water, particularly (1) an enhanced bactericidal activity (when compared with other nanocomposites only containing Ag or Co nanoparticles), with a cell viability close to 0% for bacterial suspensions with an initial concentration below 10(5) colony forming units per milliliter (CFU/mL) after a single pass through the material, (2) capacity of killing a wide range of bacterial types (from coliforms to gram-positive bacteria), and (3) a long performance-time, with an efficiency of 100% (0% viability) up to 1 h of operation and higher than 90% during the first 24 h of continuous operation. The nanocomposite also showed a good performance when applied to water samples from natural sources with more complex matrices with efficiencies always higher than 80%.

View Article and Find Full Text PDF

In this communication we describe the synthesis, characterization and evaluation of the bactericide activity of a superparamagnetic bimetallic Ag/Co polymeric nanocomposite material for the treatment of bacteria contaminated aqueous solutions.

View Article and Find Full Text PDF

Bacteria detection in real samples often involves long and tedious methodologies such as culture enrichment, biochemical screening, and serological confirmation. In this context, the development of biosensors and quick assays for bacteria detection appears as fast growing fields. However, a detailed study of reports in these areas reveals the existence of important differences in bacteria storage, handling, and detection conditions, indicating that authors do not take advantage of the well-established procedures existing for classical techniques such as enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

Starting in July 2000, treated wastewater of urban origin has been used for the "Serres de Pals" golf course irrigation (Girona, Spain). To evaluate if the soil and the aquifer underneath are affected by the utilization of this type of water, samples have been taken along a period of several months from the wastewater treatment plant, the stabilization lagoon, groundwater and soil profiles. Analyses have been performed for total coliforms and aerobic bacteria, soil water pressure and soil water content as well as chemical analyses of the irrigation water, aquifer and water of the vadose zone.

View Article and Find Full Text PDF

Hydrocarbon-degrading microorganisms from natural environments have been isolated and identified using culture-dependent or molecular techniques. However, there has been little research into the occurrence of microorganisms incorporated into crude oil in the initial steps of extraction and handling, which can reduce the quality of stored petroleum. In the present study, a packed-column reactor filled with autoclaved perlite soaked with crude oil was subjected to a continuous flow of sterile medium in order to determine the presence of potential hydrocarbon degraders.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvlcl8qgp9211chv3nmqivpm9f794kvs0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once