Mechanical forces from blood flow and pressure (hemodynamic forces) contribute to the formation and shaping of the blood vascular network during embryonic development. Previous studies have demonstrated that hemodynamic forces regulate signaling and gene expression in endothelial cells that line the inner surface of vascular tubes, thereby modifying their cellular state and behavior. Given its important role in vascular development, we still know very little about the quantitative aspects of hemodynamics that endothelial cells experience due to the difficulty in measuring forces .
View Article and Find Full Text PDFThe formation of vascular tubes is driven by extensive changes in endothelial cell (EC) shape. Here, we have identified a role of the actin-binding protein, Marcksl1, in modulating the mechanical properties of EC cortex to regulate cell shape and vessel structure during angiogenesis. Increasing and depleting Marcksl1 expression level in vivo results in an increase and decrease, respectively, in EC size and the diameter of microvessels.
View Article and Find Full Text PDFThis study demonstrates the rapid fabrication and utility of 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer film for cell patterning. The film was obtained on a cell culture surface by microcasting MPC polymer ethanol solution into a degassed polydimethylsiloxane mold with a desired pattern. After removal of the mold, 293AD cells were cultured on the surface of the polymer film with the patterned microstructures.
View Article and Find Full Text PDF