The original publication contains error error in the Materials and Methods section and in the acknowledgement section.
View Article and Find Full Text PDFMithramycin A is an antitumor compound used for treatment of several types of cancer including chronic and acute myeloid leukemia, testicular carcinoma, hypercalcemia and Paget's disease. Selective modifications of this molecule by combinatorial biosynthesis and biocatalysis opened the possibility to produce mithramycin analogues with improved properties that are currently under preclinical development. The mithramycin A biosynthetic gene cluster from Streptomyces argillaceus ATCC12956 was cloned by transformation assisted recombination in Saccharomyces cerevisiae and heterologous expression in Streptomyces lividans TK24 was evaluated.
View Article and Find Full Text PDFSeveral acyl derivatives of the aureolic acid chromomycin A(3) were obtained via lipase-catalyzed acylation. Lipase B from Candida antarctica (CAL-B) was found to be the only active biocatalyst, directing the acylation regioselectively towards the terminal secondary hydroxyl group of the aglycone side chain. All new chromomycin A(3) derivatives showed antitumor activity at the micromolar or lower level concentration.
View Article and Find Full Text PDFMithramycin is an antitumor compound produced by Streptomyces argillaceus that has been used for the treatment of several types of tumors and hypercalcaemia processes. However, its use in humans has been limited because of its side effects. Using combinatorial biosynthesis approaches, we have generated seven new mithramycin derivatives, which differ from the parental compound in the sugar profile or in both the sugar profile and the 3-side chain.
View Article and Find Full Text PDFMithramycin and chromomycin A(3) are two structurally related antitumour compounds, which differ in the glycosylation profiles and functional group substitutions of the sugars. Chromomycin contains two acetyl groups, which are incorporated during the biosynthesis by the acetyltransferase CmmA in Streptomyces griseus ssp. griseus.
View Article and Find Full Text PDFChromomycin A(3) is an antitumour antibiotic that acts by inhibiting transcription and replication of DNA. The producer micro-organism Streptomyces griseus subsp. griseus is highly resistant to chromomycin A(3) and to the structurally related compound mithramycin upon induction with chromomycin A(3).
View Article and Find Full Text PDFAppl Microbiol Biotechnol
November 2006
Members of the aureolic acid family are tricyclic polyketides with antitumor activity which are produced by different streptomycete species. These members are glycosylated compounds with two oligosaccharide chains of variable sugar length. They interact with the DNA minor groove in high-GC-content regions in a nonintercalative way and with a requirement for magnesium ions.
View Article and Find Full Text PDFChromomycin A3 is an antitumor drug produced by Streptomyces griseus subsp. griseus. It consists of a tricyclic aglycone with two aliphatic side chains and two O-glycosidically linked saccharide chains, a disaccharide of 4-O-acetyl-D-oliose (sugar A) and 4-O-methyl-D-oliose (sugar B), and a trisaccharide of D-olivose (sugar C), D-olivose (sugar D), and 4-O-acetyl-L-chromose B (sugar E).
View Article and Find Full Text PDFChromomycin A3 is a member of the aureolic acid group family of antitumour drugs. Three tailoring modification steps occur during its biosynthesis affecting the sugar moieties: two O-acetylations and one O-methylation. The 4-O-methylation in the 4-O-methyl-D-oliose moiety of the disaccharide chain is catalysed by the cmmMIII gene product.
View Article and Find Full Text PDFThe biosynthetic gene cluster of the aureolic acid type antitumor drug chromomycin A3 from S. griseus subsp. griseus has been identified and characterized.
View Article and Find Full Text PDF