Publications by authors named "Nuria Mencia-Trinchant"

Article Synopsis
  • Cancer patients, particularly those with melanoma and non-small cell lung cancer (NSCLC), show higher rates of clonal hematopoiesis, which could influence their treatment and outcomes.
  • The study examines how immune checkpoint blockade (ICB) therapy impacts the hematopoietic clonal architecture and whether changes in clonal expansion affect hematopoietic health in these patients.
  • Findings suggest that mutations within the hematopoietic system increase with extended ICB therapy, raising questions about the potential for clonal hematopoiesis to predict therapy responses and the long-term risks of developing myeloid malignancies.
View Article and Find Full Text PDF

Genomic profiles and prognostic biomarkers in patients with acute myeloid leukemia (AML) from ancestry-diverse populations are underexplored. We analyzed the exomes and transcriptomes of 100 patients with AML with genomically confirmed African ancestry (Black; Alliance) and compared their somatic mutation frequencies with those of 323 self-reported white patients with AML, 55% of whom had genomically confirmed European ancestry (white; BeatAML). Here we find that 73% of 162 gene mutations recurrent in Black patients, including a hitherto unreported PHIP alteration detected in 7% of patients, were found in one white patient or not detected.

View Article and Find Full Text PDF
Article Synopsis
  • The Inspiration4 mission was the first all-civilian orbital flight that explored how short-duration spaceflight affects human physiology, using a multi-omic approach to study various challenges like microgravity, immune response, and radiation exposure.
  • Researchers collected dried blood samples before, during, and after the flight to analyze DNA and telomere lengths, track genomic stability, and monitor immune adaptations using advanced bioinformatics.
  • Findings revealed that while telomeres lengthened during the flight and then shortened after return, there were notable changes in immune cell gene expression that persisted for months, providing important insights for future space missions and astronaut health.
View Article and Find Full Text PDF

Clonal hematopoiesis (CH) represents clonal expansion of mutated hematopoietic stem cells detectable in the peripheral blood or bone marrow through next generation sequencing. The current prevailing model posits that CH mutations detected in the peripheral blood mirror bone marrow mutations with clones widely disseminated across hematopoietic compartments. We sought to test the hypothesis that all clones are disseminated throughout hematopoietic tissues by comparing CH in hip vs peripheral blood specimens collected at the time of hip replacement surgery.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a disease with high incidence of relapse that is originated and maintained from leukemia stem cells (LSCs). Hematopoietic stem cells can be distinguished from LSCs by an array of cell surface antigens such as CD123, thus a candidate to eliminate LSCs using a variety of approaches, including CAR T cells. Here, we evaluate the potential of allogeneic gene-edited CAR T cells targeting CD123 to eliminate LSCs (UCART123).

View Article and Find Full Text PDF

Purpose: Hematologic toxic effects of peptide receptor radionuclide therapy (PRRT) can be permanent. Patients with underlying clonal hematopoiesis (CH) may be more inclined to develop hematologic toxicity after PRRT. However, this association remains understudied.

View Article and Find Full Text PDF

Background: mutation status can influence prognosis and management in AML. Accordingly, clinical testing (i.e.

View Article and Find Full Text PDF

Clonal hematopoiesis (CH) occurs when blood cells harboring an advantageous mutation propagate faster than others. These mutations confer a risk for hematological cancers and cardiovascular disease. Here, we analyze CH in blood samples from a pair of twin astronauts over 4 years in bulk and fractionated cell populations using a targeted CH panel, linked-read whole-genome sequencing, and deep RNA sequencing.

View Article and Find Full Text PDF

Clonal hematopoiesis (CH) arises when mutations in the hematopoietic system confer a fitness advantage to specific clones, thereby favoring their disproportionate growth. The presence of CH increases with age and environmental exposures such as cytotoxic chemotherapy or radiotherapy. The most frequent mutations occur in epigenetic regulators, such as , , and , leading to dysregulation of tumor suppressor function, pathogen response, and inflammation.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied 212 women from the Women's Health Initiative who were healthy but later developed acute myeloid leukemia (AML) over a median follow-up of 9.6 years.
  • They performed deep sequencing on their blood DNA and found that certain mutations (in genes like IDH1, IDH2, TP53, DNMT3A, and TET2) significantly raised the chances of developing AML.
  • The presence of these mutations before diagnosis indicates a latency period that could allow for early detection and possible intervention in AML cases.
View Article and Find Full Text PDF

Pathogens have to balance transmission with persistence. For Plasmodium falciparum, the most widespread and virulent malaria parasite, persistence within its human host requires continuous asexual replication within red blood cells, while its mosquito-borne transmission depends on intra-erythrocytic differentiation into non-replicating sexual stages called gametocytes. Commitment to either fate is determined during the preceding cell cycle that begins with invasion by a single, asexually committed merozoite and ends, 48 hours later, with a schizont releasing newly formed merozoites, all committed to either continued asexual replication or differentiation into gametocytes.

View Article and Find Full Text PDF

The presence of minimal residual disease (MRD) is widely recognized as a powerful predictor of therapeutic outcome in acute myeloid leukemia (AML), but methods of measurement and quantification of MRD in AML are not yet standardized in clinical practice. There is an urgent, unmet need for robust and sensitive assays that can be readily adopted as real-time tools for disease monitoring. NPM1 frameshift mutations are an established MRD marker present in half of patients with cytogenetically normal AML.

View Article and Find Full Text PDF

Tumor microvasculature tends to be malformed, more permeable, and more tortuous than vessels in healthy tissue, effects that have been largely attributed to up-regulated VEGF expression. However, tumor tissue tends to stiffen during solid tumor progression, and tissue stiffness is known to alter cell behaviors including proliferation, migration, and cell-cell adhesion, which are all requisite for angiogenesis. Using in vitro, in vivo, and ex ovo models, we investigated the effects of matrix stiffness on vessel growth and integrity during angiogenesis.

View Article and Find Full Text PDF