Short-term plant respiration (R) increases exponentially with rising temperature, but drought could reduce respiration by reducing growth and metabolism. Acclimation may alter these responses. We examined if species with different drought responses would differ in foliar R response to +4.
View Article and Find Full Text PDFSeasonality in tree cambial activity and xylem formation encompass large variation in environmental conditions. Abiotic stressors such as warming or drought also modulate plant behavior at species and individual level. Despite xylem formation susceptibility to carbon (C) and water availability, it is still unknown which are the key physiological variables that regulate xylogenesis, and to what extent plant performance contributes to further explain the number of cells in the different phases of xylem development.
View Article and Find Full Text PDFWidespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes.
View Article and Find Full Text PDFPlants exhibit a variety of drought responses involving multiple interacting traits and processes, which makes predictions of drought survival challenging. Careful evaluation of responses within species, where individuals share broadly similar drought resistance strategies, can provide insight into the relative importance of different traits and processes. We subjected Pinus sylvestris L.
View Article and Find Full Text PDFIn this review, we address the relationship between stomatal behaviour, water potential regulation and hydraulic transport in plants, focusing on the implications for the iso/anisohydric classification of plant drought responses at seasonal timescales. We first revise the history of the isohydric concept and its possible definitions. Then, we use published data to answer two main questions: (1) is greater stomatal control in response to decreasing water availability associated with a tighter regulation of leaf water potential (Ψ ) across species? and (2) is there an association between tighter Ψ regulation (~isohydric behaviour) and lower leaf conductance over time during a drought event? These two questions are addressed at two levels: across species growing in different sites and comparing only species coexisting at a given site.
View Article and Find Full Text PDFHigher temperatures associated with climate change are anticipated to trigger an earlier start to the growing season, which could increase the terrestrial C sink strength. Greater variability in the amount and timing of precipitation is also expected with higher temperatures, bringing increased drought stress to many ecosystems. We experimentally assessed the effects of higher temperature and drought on the foliar phenology and shoot growth of mature trees of two semiarid conifer species.
View Article and Find Full Text PDFRelatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment.
View Article and Find Full Text PDF