Publications by authors named "Nuria Diaz-Argelich"

Redox active selenium (Se) compounds at sub toxic doses act as pro-oxidants with cytotoxic effects on tumor cells and are promising future chemotherapeutic agents. However, little is known about how Se compounds affect immune cells in the tumor microenvironment. We demonstrate that the inorganic Se compound selenite and the organic methylseleninic acid (MSA) do not, despite their pro-oxidant function, influence the viability of immune cells, at doses that gives cytotoxic effects in ovarian cancer cell lines.

View Article and Find Full Text PDF

Redox active selenium (Se) compounds have gained substantial attention in the last decade as potential cancer therapeutic agents. Several Se compounds have shown high selectivity and sensitivity against malignant cells. The cytotoxic effects are exerted by their biologically active metabolites, with methylselenol (CH₃SeH) being one of the key executors.

View Article and Find Full Text PDF

Selenium compounds have emerged as promising chemotherapeutic agents with proposed epigenetic effects, however the mechanisms and downstream effects are yet to be studied. Here we assessed the effects of the inorganic selenium compound selenite and the organic form methylseleninic acid (MSA) in a leukemic cell line K562, on active (histone H3 lysine 9 acetylation, H3K9ac and histone H3 lysine 4 tri-methylation, H3K4me3) and repressive (histone H3 lysine 9 tri-methylation, H3K9me3) histone marks by Chromatin immunoprecipitation followed by DNA sequencing (ChIP-Seq). Both selenite and MSA had major effects on histone marks but the effects of MSA were more pronounced.

View Article and Find Full Text PDF

Selenium (Se) compounds are potential therapeutic agents in cancer. Importantly, the biological effects of Se compounds are exerted by their metabolites, with methylselenol (CH₃SeH) being one of the key executors. In this study, we developed a new series of methylselenoesters with different scaffolds aiming to modulate the release of CH₃SeH.

View Article and Find Full Text PDF