Along with forest managers, builders are key change agents of forest ecosystems' structure and composition through the specification and use of wood products. New forest management approaches are being advocated to increase the resilience and adaptability of forests to climate change and other natural disturbances. Such approaches call for a diversification of our forests based on species' functional traits that will dramatically change the harvested species composition, volume, and output of our forested landscapes.
View Article and Find Full Text PDFIn southern Europe, land abandonment and an unbalanced investment toward fire suppression instead of prevention has gradually increased wildfire risk, which calls for a paradigm change in fire management policies. Here we combined scenario analysis, fire landscape modelling, and economic tools to identify which land-use policies would reduce the expected wildfire-related losses in the Transboundary Biosphere Reserve 'Gerês-Xurés' (Spain-Portugal). To do so, we applied the least-cost-plus-net-value-change approach and estimated net changes in wildfire damages based on their implications for the 2010-2050 period and five ecosystem services: agriculture, pasture, timber, recreation and climate regulation.
View Article and Find Full Text PDFTo reach the Paris Agreement, societies need to increase the global terrestrial carbon sink. There are many climate change mitigation solutions (CCMS) for forests, including increasing bioenergy, bioeconomy, and protection. Bioenergy and bioeconomy solutions use climate-smart, intensive management to generate high quantities of bioenergy and bioproducts.
View Article and Find Full Text PDFNatural disturbances exacerbated by novel climate regimes are increasing worldwide, threatening the ability of forest ecosystems to mitigate global warming through carbon sequestration and to provide other key ecosystem services. One way to cope with unknown disturbance events is to promote the ecological resilience of the forest by increasing both functional trait and structural diversity and by fostering functional connectivity of the landscape to ensure a rapid and efficient self-reorganization of the system. We investigated how expected and unexpected variations in climate and biotic disturbances affect ecological resilience and carbon storage in a forested region in southeastern Canada.
View Article and Find Full Text PDFForest ecosystems face an increasing pressure of insect pest outbreaks due to changes in land-use, new climatic conditions, and the arrival of new invasive alien species. Also, insect outbreaks may interact with other shifting disturbances such as fire and drought, that eventually may boost the impacts of pests on forest ecosystems. In the case of alien species, the lack of long-term data and their rapid spread challenges their study and require appropriate new management strategies to cope with them.
View Article and Find Full Text PDFBiodiversity faces many threats and these can interact to produce outcomes that may not be predicted by considering their effects in isolation. Habitat loss and fragmentation (hereafter 'fragmentation') and altered fire regimes are important threats to biodiversity, but their interactions have not been systematically evaluated across the globe. In this comprehensive synthesis, including 162 papers which provided 274 cases, we offer a framework for understanding how fire interacts with fragmentation.
View Article and Find Full Text PDFRewilding has been proposed as an opportunity for biodiversity conservation in abandoned landscapes. However, rewilding is challenged by the increasing fire risk associated with more flammable landscapes, and the loss of open-habitat specialist species. Contrastingly, supporting High Nature Value farmlands (HNVf) has been also highlighted as a valuable option, but the effective implementation of agricultural policies often fails leading to uncertain scenarios wherein the effects of wildfire management remain largely unexplored.
View Article and Find Full Text PDFFire has been a source of global biodiversity for millions of years. However, interactions with anthropogenic drivers such as climate change, land use, and invasive species are changing the nature of fire activity and its impacts. We review how such changes are threatening species with extinction and transforming terrestrial ecosystems.
View Article and Find Full Text PDFForests are projected to undergo dramatic compositional and structural shifts prompted by global changes, such as climatic changes and intensifying natural disturbance regimes. Future uncertainty makes planning for forest management exceptionally difficult, demanding novel approaches to maintain or improve the ability of forest ecosystems to respond and rapidly reorganize after disturbance events. Adopting a landscape perspective in forest management is particularly important in fragmented forest landscapes where both diversity and connectivity play key roles in determining resilience to global change.
View Article and Find Full Text PDFFire regimes are shifting or are expected to do so under global change. Current fire suppression is not able to control all wildfires, and its capability to do so might be compromised under harsher climate conditions. Alternative fire management strategies may allow to counteract predicted fire trends, but we lack quantitative tools to evaluate their potential effectiveness at the landscape scale.
View Article and Find Full Text PDFDespite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities.
View Article and Find Full Text PDFAvailable data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime.
View Article and Find Full Text PDF