Publications by authors named "Nuria Andres-Colas"

Living organisms have developed finely regulated homeostatic networks to mitigate the effects of environmental fluctuations in transition metal micronutrients, including iron, zinc, and copper. In Saccharomyces cerevisiae, the tandem zinc-finger protein Cth2 post-transcriptionally regulates gene expression under conditions of iron deficiency by controlling the levels of mRNAs that code for non-essential ferroproteins. The molecular mechanism involves Cth2 binding to AU-rich elements present in the 3' untranslated region of target mRNAs, negatively affecting their stability and translation.

View Article and Find Full Text PDF

Due to anthropogenic global warming, droughts are expected to increase and water availability to decrease in the coming decades. For this reason, research is increasingly focused on developing plant varieties and crop cultivars with reduced water consumption. Transpiration occurs through stomatal pores, resulting in water loss.

View Article and Find Full Text PDF

Potassium (K) is a key monovalent cation necessary for multiple aspects of cell growth and survival. In plants, this cation also plays a key role in the control of stomatal movement. KAT1 and its homolog KAT2 are the main inward rectifying channels present in guard cells, mediating K influx into these cells, resulting in stomatal opening.

View Article and Find Full Text PDF

Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is essential for plants and its concentration must be maintained at approximately 150 mM in the plant cell cytoplasm including under circumstances where its concentration is much lower in soil. On the other hand, sodium must be extruded from the plant or accumulated either in the vacuole or in specific plant structures.

View Article and Find Full Text PDF

Copper is an essential element in plants. When scarce, copper is acquired from extracellular environment or remobilized from intracellular sites, through members of the high affinity copper transporters family COPT located at the plasma membrane and internal membrane, respectively. Here, we show that COPT3 is an intracellular copper transporter, located at a compartment of the secretory pathway, that is mainly expressed in pollen grains and vascular bundles.

View Article and Find Full Text PDF

Pentatricopeptide repeat proteins are one of the major protein families in flowering plants, containing around 450 members. They participate in RNA editing and are related to plant growth, development and reproduction, as well as to responses to ABA and abiotic stresses. Their characteristics have been described in silico; however, relatively little is known about their biochemical properties.

View Article and Find Full Text PDF

Recent identification of several different types of RNA editing factors in plant organelles suggests complex RNA editosomes within which each factor has a different task. However, the precise protein interactions between the different editing factors are still poorly understood. In this paper, we show that the E-type pentatricopeptide repeat (PPR) protein SLO2, which lacks a C-terminal cytidine deaminase-like DYW domain, interacts in vivo with the DYW-type PPR protein DYW2 and the P-type PPR protein NUWA in mitochondria, and that the latter enhances the interaction of the former ones.

View Article and Find Full Text PDF

Copper (Cu), an essential redox active cofactor, participates in fundamental biological processes, but it becomes highly cytotoxic when present in excess. Therefore, living organisms have established suitable mechanisms to balance cellular and systemic Cu levels. An important strategy to maintain Cu homeostasis consists of regulating uptake and mobilization via the conserved family of CTR/COPT Cu transport proteins.

View Article and Find Full Text PDF

Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

Copper is an essential micronutrient in higher plants, but it is toxic in excess. The fine adjustments required to fit copper nutritional demands for optimal growth are illustrated by the diverse, severe symptoms resulting from copper deficiency and excess. Here, a differential transcriptomic analysis was done between Arabidopsis thaliana plants suffering from mild copper deficiency and those with a slight copper excess.

View Article and Find Full Text PDF

Transition metals such as copper can interact with ascorbate or hydrogen peroxide to form highly reactive hydroxyl radicals (OH(•) ), with numerous implications to membrane transport activity and cell metabolism. So far, such interaction was described for extracellular (apoplastic) space but not cytosol. Here, a range of advanced electrophysiological and imaging techniques were applied to Arabidopsis thaliana plants differing in their copper-transport activity: Col-0, high-affinity copper transporter COPT1-overexpressing (C1(OE) ) seedlings, and T-DNA COPT1 insertion mutant (copt1).

View Article and Find Full Text PDF

Copper is an essential micronutrient that functions as a redox cofactor in multiple plant processes, including photosynthesis. Arabidopsis thaliana possesses a conserved family of CTR-like high-affinity copper transport proteins denoted as COPT1-5. COPT1, the only family member that is functionally characterized, participates in plant copper acquisition.

View Article and Find Full Text PDF

Almost every aspect of plant physiology is influenced by diurnal and seasonal environmental cycles which suggests that biochemical oscillations must be a pervasive phenomenon in the underlying molecular organization. The circadian clock is entrained by light and temperature cycles, and controls a wide variety of endogenous processes that enable plants to anticipate the daily periodicity of environmental conditions. Several previous reports suggest a connection between copper (Cu) homeostasis and the circadian clock in different organisms other than plants.

View Article and Find Full Text PDF

Copper is an essential cofactor for key processes in plants, but it exerts harmful effects when in excess. Previous work has shown that the Arabidopsis (Arabidopsis thaliana) COPT1 high-affinity copper transport protein participates in copper uptake through plant root tips. Here, we show that COPT1 protein localizes to the plasma membrane of Arabidopsis cells and the phenotypic effects of transgenic plants overexpressing either COPT1 or COPT3, the latter being another high-affinity copper transport protein family member.

View Article and Find Full Text PDF

Plants are among the most versatile higher eukaryotes in accommodating environmental copper availability to largely variable demands. In particular, copper deficiency in soils is a threat for plant survival since it mostly affects reproductive structures. One of the strategies that plant cells use to overcome this situation is to increase copper levels by expressing high-affinity copper transporters delivering the metal to the cytosol.

View Article and Find Full Text PDF

Plants have developed sophisticated mechanisms to tightly control the acquisition and distribution of copper and iron in response to environmental fluctuations. Recent studies with Arabidopsis thaliana are allowing the characterization of the diverse families and components involved in metal uptake, such as metal-chelate reductases and plasma membrane transporters. In parallel, emerging data on both intra- and intercellular metal distribution, as well as on long-distance transport, are contributing to the understanding of metal homeostatic networks in plants.

View Article and Find Full Text PDF

Copper (Cu) chaperones constitute a family of small Cu+-binding proteins required for Cu homeostasis in eukaryotes. The ATX1 family of Cu chaperones specifically delivers Cu to heavy metal P-type ATPases. The plant Arabidopsis thaliana expresses the ATX1-like Cu chaperone CCH, which exhibits a plant-specific carboxy-terminal domain (CTD) with unique structural properties.

View Article and Find Full Text PDF

Since copper (Cu) is essential in key physiological oxidation reactions, organisms have developed strategies for handling Cu while avoiding its potentially toxic effects. Among the tools that have evolved to cope with Cu is a network of Cu homeostasis factors such as Cu-transporting P-type ATPases that play a key role in transmembrane Cu transport. In this work we present the functional characterization of an Arabidopsis Cu-transporting P-type ATPase, denoted heavy metal ATPase 5 (HMA5), and its interaction with Arabidopsis metallochaperones.

View Article and Find Full Text PDF

In plant chloroplasts two superoxide dismutase (SOD) activities occur, FeSOD and Cu/ZnSOD, with reciprocal regulation in response to copper availability. This system presents a unique model to study the regulation of metal-cofactor delivery to an organelle. The Arabidopsis thaliana gene AtCCS encodes a functional homolog to yeast Ccs1p/Lys7p, a copper chaperone for SOD.

View Article and Find Full Text PDF