The most common bulk acoustic wave device used in biosensing applications is the quartz crystal microbalance (QCM), in which a resonant pure shear acoustic wave is excited via electrodes on both major faces of a thin AT-cut quartz plate. For biosensing, the QCM is used to detect the capture of a target by a target-capture film. The sensitivity of the QCM is typically based solely on the detection of mechanical property changes, as electrical property change detection is limited by the electrode on its sensing surface.
View Article and Find Full Text PDFHealthc Technol Lett
October 2019
The performance of an acoustic stethoscope is improved by translating, without loss of fidelity, heart sounds, chest sounds, and intestinal sounds below 50 Hz into a frequency range of 200 Hz, which is easily detectable by the human ear. Such a frequency translation will be of significant benefit to hearing impaired physicians and it will improve the stethoscope performance in a noisy environment. The technique is based on a single sideband suppressed carrier modulation.
View Article and Find Full Text PDFA unique three dimensional (3D) porous structured bacterial cellulose (BC) can act as a supporting material to deposit the nanofillers in order to create advanced BC-based functional nanomaterials for various technological applications. In this study, novel nanocomposites comprised of BC with exfoliated graphite nanoplatelets (xGnP) incorporated into the BC matrix were prepared using a simple particle impregnation strategy to enhance the thermal properties and electrical conductivity of the BC. The flake-shaped xGnP particles were well dispersed and formed a continuous network throughout the BC matrix.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
April 2006
DNA immobilization enhancement is demonstrated in a structure consisting of ZnO nanotips on 128 degrees Y-cut LiNbO3. The ZnO nanotips are grown by metalorganic chemical vapor deposition (MOCVD) on the top of a SiO2 layer that is deposited and patterned on the LiNbO3 SAW delay path. The effects of ZnO nanotips on the SAW response are investigated.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
July 2005
Piezoelectric thin films on high acoustic velocity nonpiezoelectric substrates, such as ZnO, AlN, or GaN deposited on diamond or sapphire substrates, are attractive for high frequency and low-loss surface acoustic wave devices. In this work, ZnO films are deposited on AlxGa1-xN/c-Al2O3 (0 < or = chi < or = 1) substrates using the radio frequency (RF) sputtering technique. In comparison with a single AlxGa1-xN layer deposited on c-Al2O3 with the same total film thickness, a ZnO/AlxGa1-xN/c-Al2O3 multilayer structure provides several advantages, including higher order wave modes with higher velocity and larger electromechanical coupling coefficient (K2).
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
October 2003
Piezoelectric thin film zinc oxide (ZnO) and its ternary alloy magnesium zinc oxide (MgxZn1-xO) have broad applications in transducers, resonators, and filters. In this work, we present a new bulk acoustic wave (BAW) structure consisting of Al/MgxZn1-xO/n(+)-ZnO/r-sapphire, where Al and n+ type ZnO serve as the top and bottom electrode, respectively. The epitaxial MgxZn1-xO films have the same epitaxial relationships with the substrate as ZnO on r-Al2O3, resulting in the c-axis of the MgxZn1-xO being in the growth plane.
View Article and Find Full Text PDF