Publications by authors named "Nuri Park"

Identification of early immune signatures associated with acute myeloid leukemia (AML) relapse following hematopoietic stem cell transplant (HSCT) is critical for patient outcomes. We analyzed PBMCs from 58 patients with AML undergoing HSCT, focusing on T cell subsets and functional profiles. High-dimensional flow cytometry coupled with Uniform Manifold Approximation and Projection dimensionality reduction and PhenoGraph clustering revealed distinct changes in CD4+ and CD8+ T cell populations in 16 patients who relapsed within 1 y of HSCT.

View Article and Find Full Text PDF

Surface plasmons in 2D materials such as graphene exhibit exceptional field confinement. However, the low electron density of majority of 2D materials, which are semiconductors or semimetals, has limited their plasmons to mid-wave or long-wave infrared regime. This study demonstrates that a 2D TiCT MXene with high electron density can not only support strong plasmon confinement with an acoustic plasmon mode in the short-wave infrared region, but also provide ultrahigh nonlinear responses.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is characterized by an inappropriate and persistent inflammatory immune response and is often accompanied by excessive reactive oxygen species (ROS) production. For effective IBD treatment, there is a high demand for safe and targeted therapy that can be orally administered. In this study, we aimed to propose the use of inflamed colon-targeted antioxidant nanotherapeutics (ICANs) for oxidative stress level modulation in colitis.

View Article and Find Full Text PDF

Studies over the last 100 years have suggested a link between inflammation, infectious disease, and Alzheimer's Disease (AD). Understanding how the immune system changes during the development of AD may facilitate new treatments. Here, we studied an aging cohort who had been assessed for AD pathology with amyloid positron emission tomography and cognitive testing, and conducted high dimensional flow cytometry on peripheral blood mononuclear and cerebrospinal fluid cells.

View Article and Find Full Text PDF

Metasurface technology is revolutionizing the field of optics and pursuing expanded functions via technical developments, such as the integration of multiple metasurfaces with optical fibers. Despite several attempts to realize metasurface-on-fiber platforms, negligible fiber-facet areas pose a serious obstacle to efficient and precise fabrication. Herein, we demonstrate a novel sequential micro-punching process that enables rapid and precise stacking of multiple polymer metasurfaces on the end face of a single-mode optical fiber.

View Article and Find Full Text PDF

Tendon consists of soft collagen, yet it is mechanically strong and firmly adhered to the bone owing to its hierarchically anisotropic structure and unique tendon-to-bone integration (enthesis), respectively. Despite the recent advances in biomaterials, hydrogels simultaneously providing tendon-like high mechanical properties and strong adhesion to bone-mimicking enthesis is still challenging. Here, a strong, stiff, and adhesive triple-network (TN) anisotropic hydrogel that mimics a bone-adhering tendon is shown.

View Article and Find Full Text PDF

Owing to their anisotropic and hierarchical structure, tendons exhibit an outstanding mechanical performance despite the low polymer concentration and softness of the constituent materials. Here, we propose a tendon-mimicking, strong, and tough hydrogel with a multiscale hierarchical and anisotropic structure. An isotropic, precursor double-network hydrogel is transformed into an anisotropic hydrogel by stretching, solvent exchange, and subsequent fixation via ionic crosslinking.

View Article and Find Full Text PDF
Article Synopsis
  • * Various optical cavities have been explored for creating energy-efficient light sources in photonic circuits, but reducing their size beyond the diffraction limit while maintaining performance remains a challenge.
  • * Recent innovations in subwavelength metallic cavities are highlighted, including methods for light engineering and their potential practical applications in enhancing photonic integrated circuit technology.
View Article and Find Full Text PDF

We propose extreme field confinement in a zigzag plasmonic crystal that can produce a wide plasmonic bandgap near the visible frequency range. By applying a periodic zigzag structure to a metal-insulator-metal plasmonic waveguide, the lowest three plasmonic crystal bands are flattened, creating a high-quality broadband plasmonic mirror over a wavelength range of 526-909 nm. Utilizing zigzag plasmonic crystals in a three-dimensional tapered metal-insulator-metal plasmonic cavity, extreme field confinement with a modal volume of less than 0.

View Article and Find Full Text PDF

, a deep-branching hyperthermophilic bacterium, expresses an extraordinarily stable acyl carrier protein (-ACP) that functions as a carrier in the fatty acid synthesis system at near-boiling aqueous environments. Here, to understand the hyperthermal adaptation of -ACP, we investigated the structure and dynamics of -ACP by nuclear magnetic resonance (NMR) spectroscopy. The melting temperature of -ACP (101.

View Article and Find Full Text PDF

In recent years, novel high-performance nanophotonic devices have been realized by applying ultrathin two-dimensional nanolayer materials to nanophotonics. In this paper, we propose nanolayer-embedded compact pseudo-photonic crystals (PPCs) that enable strong interaction between ultrathin nanolayers and photonic crystal modes. In typical two-dimensional slab photonic crystals, the transverse-magnetic (TM) photonic crystal bandgap is not well formed, making it difficult to operate the TM photonic crystal waveguide modes.

View Article and Find Full Text PDF

A blood-based approach such as circulating tumor DNA remains challenging in diagnosis for early-stage disease. Bronchial washing (BW) is a minimally invasive procedure that yields fluids that may contain tumor DNA. Therefore, we prospectively enrolled 12 patients with early-stage non-small cell lung cancer without endoscopically visible tumors.

View Article and Find Full Text PDF

Objective: Busulfan, frequently used as a conditioning regimen for hematopoietic stem cell transplantation, has a narrow therapeutic range and wide intra-and interpatient variabilities. Therefore, therapeutic drug monitoring of busulfan is necessary to ensure that the drug concentrations of patients are within a targeted therapeutic range. In this study, we developed a simple and accurate method for measuring busulfan concentrations using liquid chromatography tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Bitcoin is an online currency that is used worldwide to make online payments. It has consequently become an investment vehicle in itself and is traded in a way similar to other open currencies. The ability to predict the price fluctuation of Bitcoin would therefore facilitate future investment and payment decisions.

View Article and Find Full Text PDF

This paper proposes a system for predicting increases in virtual world user actions. The virtual world user population is a very important aspect of these worlds; however, methods for predicting fluctuations in these populations have not been well documented. Therefore, we attempt to predict changes in virtual world user populations with deep learning, using easily accessible online data, including formal datasets from Google Trends, Wikipedia, and online communities, as well as informal datasets collected from online forums.

View Article and Find Full Text PDF

In this study, we developed a novel DNA vaccine for HPV; a recombinant baculovirus bearing human endogenous retrovirus (HERV) envelope protein, which cannot replicate in mammals, was used as a nano-carrier for HPV-16L1 DNA vaccine (AcHERV-HP16L1). For in vivo test, mice were injected intramuscularly with 107 particles of the constructs, with two boosts at 2-week intervals. Compared with Gardasil (25 microL/dose), the AcHERV-HP16L1 immunized mice showed similar high levels of humoral immunity in IgG/IgA and in neutralization of HPV pseudovirions.

View Article and Find Full Text PDF

Human tropic Porcine Endogenous Retroviruses (PERVs) are the major concern in zoonosis for xenotransplantation because PERVs cannot be eliminated by specific pathogen-free breeding. Recently, a PERV A/C recombinant with PERV-C bearing PERV-A gp70 showed a higher infectivity (approximately 500-fold) to human cells than PERV-A. Additionally, the chance of recombination between PERVs and HERVs is frequently stated as another risk of xenografting.

View Article and Find Full Text PDF