In this study, we investigate the intricate regulatory mechanisms underlying the circadian clock in Drosophila, focusing on the light-induced conformational changes in the cryptochrome (DmCry). Upon light exposure, DmCry undergoes conformational changes that prompt its binding to Timeless and Jetlag proteins, initiating a cascade crucial for the starting of a new circadian cycle. DmCry is subsequently degraded, contributing to the desensitization of the resetting mechanism.
View Article and Find Full Text PDFCryptochromes (CRYs), transcriptional repressors of the circadian clock in mammals, inhibit cAMP production when glucagon activates G-protein coupled receptors. Therefore, molecules that modulate CRYs have the potential to regulate gluconeogenesis. In this study, we discovered a new molecule called TW68 that interacts with the primary pockets of mammalian CRY1/2, leading to reduced ubiquitination levels and increased stability.
View Article and Find Full Text PDFCryptochromes are negative transcriptional regulators of the circadian clock in mammals. It is not clear how reducing the level of endogenous CRY1 in mammals will affect circadian rhythm and the relation of such a decrease with apoptosis. Here, we discovered a molecule (M47) that destabilizes Cryptochrome 1 (CRY1) both in vitro and in vivo.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
July 2022
Circadian rhythm is a 24-h cycle that regulates the biochemical and behavioral changes of organisms. It controls a wide range of functions, from gene expression to behavior, allowing organisms to anticipate daily changes in their environment. In mammals, circadian rhythm is generated by a complex transcriptional and translational feedback loop mechanism.
View Article and Find Full Text PDFCircadian rhythms are a series of endogenous autonomous 24-h oscillations generated by the circadian clock. At the molecular level, the circadian clock is based on a transcription-translation feedback loop, in which BMAL1 and CLOCK transcription factors of the positive arm activate the expression of CRYPTOCHROME (CRY) and PERIOD (PER) genes of the negative arm as well as the circadian clock-regulated genes. There are three PER proteins, of which PER2 shows the strongest oscillation at both stability and cellular localization level.
View Article and Find Full Text PDFCircadian rhythms are endogenous autonomous 24-h oscillations that are generated by a transcription-translation feedback loop (TTFL). In the positive arm of the TTFL, two transcription factors activate the expression of two genes of the negative arm as well as circadian clock-regulated genes. The circadian clocks are reset through photoreceptor proteins by sunlight in the early morning to keep synchrony with the geological clock.
View Article and Find Full Text PDFCircadian rhythm is an important mechanism that controls behavior and biochemical events based on 24 h rhythmicity. Ample evidence indicates disturbance of this mechanism is associated with different diseases such as cancer, mood disorders, and familial delayed phase sleep disorder. Therefore, drug discovery studies have been initiated using high throughput screening.
View Article and Find Full Text PDFThe structural, spectroscopic and electronic properties of 4-(4-nitrophenyl)-5-(pyridin-3-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione have been analyzed by using single crystal X-ray diffraction (SCXRD), H and C NMR chemical shifts and FT-IR spectroscopic methods both theoretically and experimentally. The tautomeric (thiol and thione) energetic analysis results, structural optimization parameters (bond lengths and angles), vibrational wavenumbers, proton and carbon NMR chemical shifts, UV-Vis. parameters, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) analyses and Molecular Electrostatic Potential (MEP) surface have been calculated by using DFT/B3LYP quantum chemical method with 6-311++G(2d,2p) basis set to compare with the experimental results.
View Article and Find Full Text PDFWe have previously reported that the deletion of BMAL1 gene has opposite effects in respect to its contribution to the pathways that are effective in the multistage carcinogenesis process. BMAL1 deletion sensitized nearly normal breast epithelial (MCF10A) and invasive breast cancer cells (MDA-MB-231) to cisplatin- and doxorubicin-induced apoptosis, while this deletion also aggravated the invasive potential of MDA-MB-231 cells. However, the mechanistic relationship of the seemingly opposite contribution of BMAL1 deletion to carcinogenesis process is not known at genome-wide level.
View Article and Find Full Text PDFProper function of many physiological processes requires a robust circadian clock. Disruptions of the circadian clock can result in metabolic diseases, mood disorders, and accelerated aging. Therefore, identifying small molecules that specifically modulate regulatory core clock proteins may potentially enable better management of these disorders.
View Article and Find Full Text PDFLight is crucial for many biological activities of most organisms, including vision, resetting of circadian rhythm, photosynthesis, and DNA repair. The cryptochrome/photolyase family (CPF) represents an ancient group of UV-A/blue light sensitive proteins that perform different functions such as DNA repair, circadian photoreception, and transcriptional regulation. The CPF is widely distributed throughout all organisms, including marine prokaryotes.
View Article and Find Full Text PDFPrevious studies have demonstrated that deletion of cryptochrome (Cry) genes protects p53 mutant mice from the early onset of cancer and extends their median life-span by about 1.5-fold. Subsequent in vitro studies had revealed that deletion of Crys enhances apoptosis in response to UV damage through activation of p73 and inactivation of GSK3β.
View Article and Find Full Text PDFPhotolyases belong to the cryptochrome/photolyase protein family (CPF) which perform different functions such as DNA repair, circadian photoreceptor, and transcriptional regulation. Photolyase is a flavoprotein that repairs UV-induced DNA damages of cyclobutane pyrimidine dimer (CPD) and pyrimidine-pyrimidone (6-4) photoproducts using blue-light as an energy source. This enzyme has two chromophores: flavin adenine dinucleotide (FAD) as a cofactor and a photoantenna such as methenyltetrahydrofolate (MTHF).
View Article and Find Full Text PDFThe circadian clock confers daily rhythmicity on many biochemical and physiological functions and its disruption is associated with increased risks of developing obesity, diabetes, heart disease and cancer. Although, there are studies on the role of Bmal1 in carcinogenesis using germline, conditional or tissue-specific knockouts, it is still not well understood how BMAL1 gene affects cancer-related biological events at the molecular level. We, therefore, took an in vitro approach to understand the contribution of BMAL1 in this molecular mechanism using human breast epithelial cell lines by knocking out BMAL1 gene with CRISPR technology.
View Article and Find Full Text PDFPhotochem Photobiol
January 2017
The photolyase/cryptochrome (PHR/CRY) family is a large group of proteins with similar structure but very diverge functions such as DNA repair, circadian clock resetting and regulation of transcription. As a result of advances in the biochemistry of the CRY/PHR family and identification of new members, several adjustments have been made to the classification of this protein family. For example, a new class of PHRs, Class III, has been proposed.
View Article and Find Full Text PDFIn this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data.
View Article and Find Full Text PDFThe circadian clock is a global regulatory system that interfaces with most other regulatory systems and pathways in mammalian organisms. Investigations of the circadian clock-DNA damage response connections have revealed that nucleotide excision repair, DNA damage checkpoints, and apoptosis are appreciably influenced by the clock. Although several epidemiological studies in humans and a limited number of genetic studies in mouse model systems have indicated that clock disruption may predispose mammals to cancer, well-controlled genetic studies in mice have not supported the commonly held view that circadian clock disruption is a cancer risk factor.
View Article and Find Full Text PDFThe spectroscopic properties of (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile have been investigated by FT-IR, UV, (1)H and (13)C NMR techniques. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been carried out by potential energy distribution (PED) analysis by using VEDA 4 software.
View Article and Find Full Text PDFCryptochrome (CRY) is the primary circadian photoreceptor in Drosophila. Upon light absorption, dCRY undergoes a conformational change that enables it to bind to Timeless (dTIM), as well as to two different E3 ligases that ubiquitylate dTIM and dCRY, respectively, resulting in their proteolysis and resetting the phase of the circadian rhythm. Purified dCRY contains oxidized flavin (FADox), which is readily photoreduced to the anionic semiquinone through a set of 3 highly conserved Trp residues (Trp triad).
View Article and Find Full Text PDFNuclear bodies are discrete suborganelle structures that perform specialized functions in eukaryotic cells. In plant cells, light can induce de novo formation of nuclear bodies called photobodies (PBs) composed of the photosensory pigments, phytochrome (PHY) or cryptochrome (CRY). The mechanisms of formation, the exact compositions, and the functions of plant PBs are not known.
View Article and Find Full Text PDFSenescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become "immortal") by inactivating growth control genes such as TP53 and CDKN2A.
View Article and Find Full Text PDFCryptochrome (CRY) is the primary circadian photoreceptor in Drosophila. It resets the circadian clock by promoting light-induced degradation of the clock proteins Timeless and Period, as well as its own proteolysis. The E3 ligases that ubiquitylate Timeless and Period before degradation are known and it is known that Drosophila (d) CRY is degraded by the ubiquitin-proteasome system as well.
View Article and Find Full Text PDFThe main feedback loop driving circadian rhythm in mice is controlled, in part, by the genes encoding the cryptochromes Cry1 and Cry2. Targeted mutation of both Cry1 and Cry2 delay the early onset of tumor formation in p53-null mutant mice. Furthermore, Ras-transformed p53- and Cry-null mouse skin fibroblasts are more sensitive than p53 mutants to apoptotic cell death initiated by agents that activate either the intrinsic or the extrinsic apoptosis pathways.
View Article and Find Full Text PDFThe circadian clock is a global regulatory mechanism that confers daily rhythmicity on many biochemical and physiological functions, including DNA excision repair in mammalian organisms. Here, we investigated the effect of the circadian clock on the major DNA damage response pathways by using mouse cell lines mutated in genes encoding proteins in the positive (Bmal1, CLOCK) or negative (Cry 1/2, Per 1/2) arms of the transcription-translation feedback loop that generates the circadian clock. We find that cells mutated in these genes are indistinguishable from wild-type in their response to UV, ionizing radiation and mitomycin C.
View Article and Find Full Text PDFMany larval sponges possess pigment ring eyes that apparently mediate phototactic swimming. Yet sponges are not known to possess nervous systems or opsin genes, so the unknown molecular components of sponge phototaxis must differ fundamentally from those in other animals, inspiring questions about how this sensory system functions. Here we present molecular and biochemical data on cryptochrome, a candidate gene for functional involvement in sponge pigment ring eyes.
View Article and Find Full Text PDF