Publications by authors named "Nuri Hohn"

Nanostructured Ge is considered a highly promising material for Li-ion battery applications as Ge offers high specific capacity and Li-ion diffusivity, while inherent mesoporous nanostructures can contribute resistance against capacity fading as typically induced by high volume expansion in bulk Ge films. Mesoporous GeO/Ge/C films are synthesized using KGe Zintl clusters as a Ge precursor and the amphiphilic diblock copolymer polystyrene--polyethylene oxide as a templating tool. As compared to a reference sample without post-treatment, enhanced surface-to-volume ratios are achieved through post-treatment with a poor-good azeotrope solvent mixture.

View Article and Find Full Text PDF

Efficient infiltration of a mesoporous titania matrix with conducting organic polymers or small molecules is one key challenge to overcome for hybrid photovoltaic devices. A quantitative analysis of the backfilling efficiency with time-of-flight grazing incidence small-angle neutron scattering (ToF-GISANS) and scanning electron microscopy (SEM) measurements is presented. Differences in the morphology due to the backfilling of mesoporous titania thin films are compared for the macromolecule poly[4,8-bis-(5-(2-ethyl-hexyl)-thio-phen-2-yl)benzo[1,2-;4,5-']di-thio-phene-2,6-diyl--(4-(2-ethyl-hexyl)-3-fluoro-thieno[3,4-]thio-phene-)-2-carboxyl-ate-2-6-diyl)] (PTB7-Th) and the heavy-element containing small molecule 2-pinacol-boronate-3-phenyl-phen-anthro[9,10-]telluro-phene (PhenTe-BPinPh).

View Article and Find Full Text PDF

The crystallization behavior of the low band gap polymer poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3'''-di(2-octyldodecyl)2,2';5',2'';5'',2'''-quaterthiophen-5,5'''-diyl)] (PffBT4T-2OD) induced in printed mesoporous titania films with different pore sizes is studied to optimize the crystal orientation for an application in hybrid solar cells. The correlation between the crystal structure of PffBT4T-2OD and the titania pore size is investigated with a combination of grazing incidence wide-angle X-ray scattering (GIWAXS) and grazing incidence small-angle X-ray scattering (GISAXS). For comparison, poly(3-hexylthiophene) (P3HT) is also backfilled into the same four types of printed titania mesoporous scaffolds.

View Article and Find Full Text PDF

The investigation of the response kinetics of smart colloidal microgel films is crucial for their optimization to enable advanced applications. We study the classical thermoresponsive microgel model system -isopropylacrylamide cross-linked with ,'-methylenebisacrylamide. Without the typically used polyelectrolyte coating of the substrate, thin microgel films are prepared in a single spin-coating step.

View Article and Find Full Text PDF

Nanostructured porous titania films are used in many energy-related applications. In this work, the temporal evolution of the mesoscopic deformation of mesoporous titania films synthesized via block copolymer-assisted sol-gel chemistry is investigated with in situ grazing incidence small-angle neutron scattering (GISANS) during exposure to DO vapor. Two types of mesoporous titania films are compared, which have a different degree of structural stability, depending on the applied annealing temperature (400 °C vs 600 °C) in a nitrogen atmosphere.

View Article and Find Full Text PDF

Hybrid films of zinc oxide (ZnO) and poly(3-hexylthiophen-2,5-diyl) (P3HT) show promising characteristics for application in hybrid bulk-heterojunction solar cells (HBSCs). However, the incompatibility of ZnO and P3HT may lead to a reduced interface area, thus reducing the probability of exciton separation and consequently lowering solar cell efficiencies. Here, a diblock copolymer P3HT- b-poly(ethylene oxide) (PEO) is introduced to improve the interface between ZnO and P3HT.

View Article and Find Full Text PDF

Fabrication of porous, foam-like germanium-based (Ge-based) nanostructures is achieved with the use of the amphiphilic diblock copolymer polystyrene-b-polyethylene oxide as structure directing agent. Basic concepts of block copolymer assisted sol-gel synthesis are successfully realized based on the [Ge9]4- Zintl clusters as a precursor for Ge-based thin films. Material/elemental composition and crystalline Ge-based phases are investigated via X-ray photoelectron spectroscopy and X-ray diffraction measurements, respectively.

View Article and Find Full Text PDF

For many applications, mesoporous titania nanostructures are exposed to water or need to be backfilled via infiltration with an aqueous solution, which can cause deformations of the nanostructure by capillary forces. In this work, the degree of deformation caused by water infiltration in two types of mesoporous, nanostructured titania films exposed to water vapor is compared. The different types of nanostructured titania films are prepared via a polymer template assisted sol-gel synthesis in conjunction with a polymer-template removal at high-temperatures under ambient conditions versus nitrogen atmosphere.

View Article and Find Full Text PDF

The amphiphilic diblock copolymer polystyrene-block-polyethylene oxide is combined with sol-gel chemistry to control the structure formation of blade-coated foam-like titania thin films. The influence of evaporation time before immersion into a poor solvent bath and polarity of the poor solvent bath are studied. Resulting morphological changes are quantified by scanning electron microscopy (SEM) and grazing incidence small angle X-ray scattering (GISAXS) measurements.

View Article and Find Full Text PDF

Polymer electrodes made of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) are used in many applications but are also sensitive to humidity. We study humidity-induced changes of PEDOT:PSS electrodes as monitored with in situ time-of-flight neutron reflectivity (TOF-NR) measurements under high humidity conditions. The influence of the solvent additive Zonyl and a post-treatment of PEDOT:PSS films with ethylene glycol (EG) serving as electrodes are analyzed with respect to the swelling ratio and water uptake.

View Article and Find Full Text PDF