Due to modern industrialization and population growth, access to clean water has become a global challenge. In this study, a metal-semiconductor heterojunction was constructed between Cu NPs and the CoNiFeO/SiO/TiO composite matrix for the photodegradation of potassium permanganate, hexavalent chromium Cr(VI) and -nitroaniline (pNA) under UV light. In addition, the electronic and adsorption properties after Cu loading were evaluated using density functional theory (DFT) calculations.
View Article and Find Full Text PDFIn this study, nanoporous anodic film was produced by anodization of niobium, Nb in a fluoride ethylene glycol electrolyte. The effect of anodization voltage and electrolyte temperature was studied to find an optimum condition for circular, ordered, and uniform pore formation. The diameter of the pores was found to be larger when the applied voltage was increased from 20 to 80 V.
View Article and Find Full Text PDFAn anodic film with a nanoporous structure was formed by anodizing niobium at 60 V in fluorinated ethylene glycol (fluoride-EG). After 30 min of anodization, the anodic film exhibited a "pore-in-pore" structure; that is, there were smaller pores growing inside larger pores. The as-anodized film was weakly crystalline and became orthorhombic NbO after heat treatment.
View Article and Find Full Text PDFArrays of TiO nanotubes (TiO NTs) with grassy surfaces were observed on titanium foil anodised at 60 V in fluorinated ethylene glycol (EG) with added hydrogen peroxide (HO). The grassy surface was generated by the chemical etching and dissolution of the surface of the TiO NTs walls, which was accelerated by the temperature increase on the addition of HO . Upon annealing at 600 °C, the grassy part of the TiO NTs was found to consist of mostly anatase TiO whereas the bottom part of the anodic oxide comprised a mixture of anatase and rutile TiO.
View Article and Find Full Text PDF