The stress-induced keratin intermediate filament gene/protein (K16) is spatially restricted to the suprabasal compartment of the epidermis and extensively used as a biomarker for psoriasis, hidradenitis suppurativa, atopic dermatitis and other inflammatory disorders. However, its role in these conditions remains poorly defined. Here we show that K16 negatively regulates type-I interferon (IFN) signaling and innate immune responses.
View Article and Find Full Text PDFSubcortical heterotopia is a cortical malformation associated with epilepsy, intellectual disability, and an excessive number of cortical neurons in the white matter. Echinoderm microtubule-associated protein like 1 (EML1) mutations lead to subcortical heterotopia, associated with abnormal radial glia positioning in the cortical wall, prior to malformation onset. This perturbed distribution of proliferative cells is likely to be a critical event for heterotopia formation; however, the underlying mechanisms remain unexplained.
View Article and Find Full Text PDFUrinary omics has become a powerful tool for elucidating pathophysiology of glomerular diseases. However, no urinary omics analysis has been performed yet on renal AA amyloidosis. Here, we performed a comparative urine proteomic and metabolomic analysis between recently diagnosed renal AA amyloidosis (AA) and membranous nephropathy (MN) patients.
View Article and Find Full Text PDFCryptochromes (CRYs), transcriptional repressors of the circadian clock in mammals, inhibit cAMP production when glucagon activates G-protein coupled receptors. Therefore, molecules that modulate CRYs have the potential to regulate gluconeogenesis. In this study, we discovered a new molecule called TW68 that interacts with the primary pockets of mammalian CRY1/2, leading to reduced ubiquitination levels and increased stability.
View Article and Find Full Text PDFTracking biological objects such as cells or subcellular components imaged with time-lapse microscopy enables us to understand the molecular principles about the dynamics of cell behaviors. However, automatic object detection, segmentation and extracting trajectories remain as a rate-limiting step due to intrinsic challenges of video processing. This paper presents an adaptive tracking algorithm (Adtari) that automatically finds the optimum search radius and cell linkages to determine trajectories in consecutive frames.
View Article and Find Full Text PDFCryptochromes are negative transcriptional regulators of the circadian clock in mammals. It is not clear how reducing the level of endogenous CRY1 in mammals will affect circadian rhythm and the relation of such a decrease with apoptosis. Here, we discovered a molecule (M47) that destabilizes Cryptochrome 1 (CRY1) both in vitro and in vivo.
View Article and Find Full Text PDFPurpose: Coronavirus disease 2019 (COVID-19) continues to threaten public health globally. Severe acute respiratory coronavirus type 2 (SARS-CoV-2) infection-dependent alterations in the host cell signaling network may unveil potential target proteins and pathways for therapeutic strategies. In this study, we aim to define early severity biomarkers and monitor altered pathways in the course of SARS-CoV-2 infection.
View Article and Find Full Text PDFClear cell Renal Cell Carcinoma (ccRCC) is among the 10 most common cancers in both men and women and causes more than 140,000 deaths worldwide every year. In order to elucidate the underlying molecular mechanisms orchestrated by phosphorylation modifications, we performed a comprehensive quantitative phosphoproteomics characterization of ccRCC tumor and normal adjacent tissues. Here, we identified 16,253 phosphopeptides, of which more than 9000 were singly quantified.
View Article and Find Full Text PDFCircadian rhythms are a series of endogenous autonomous 24-h oscillations generated by the circadian clock. At the molecular level, the circadian clock is based on a transcription-translation feedback loop, in which BMAL1 and CLOCK transcription factors of the positive arm activate the expression of CRYPTOCHROME (CRY) and PERIOD (PER) genes of the negative arm as well as the circadian clock-regulated genes. There are three PER proteins, of which PER2 shows the strongest oscillation at both stability and cellular localization level.
View Article and Find Full Text PDFNuclear pore complexes (NPCs) are channels within the nuclear envelope that mediate nucleocytoplasmic transport. NPCs form within the closed nuclear envelope during interphase or assemble concomitantly with nuclear envelope reformation in late stages of mitosis. Both interphase and mitotic NPC biogenesis require coordination of protein complex assembly and membrane deformation.
View Article and Find Full Text PDFBackground: The histone H3 lysine 79 (H3K79) methyltransferase DOT1L is a key chromatin-based barrier to somatic cell reprogramming. However, the mechanisms by which DOT1L safeguards cell identity and somatic-specific transcriptional programs remain unknown.
Results: We employed a proteomic approach using proximity-based labeling to identify DOT1L-interacting proteins and investigated their effects on reprogramming.
Phosphorylation is an essential post-translational modification for almost all cellular processes. Several global phosphoproteomics analyses have revealed phosphorylation profiles under different conditions. Beyond identification of phospho-sites, protein structures add another layer of information about their functionality.
View Article and Find Full Text PDFClear cell renal cell carcinoma (ccRCC) is the third most common and most malignant urological cancer, with a 5-year survival rate of 10% for patients with advanced tumors. Here, we identified 10,160 unique proteins by in-depth quantitative proteomics, of which 955 proteins were significantly regulated between tumor and normal adjacent tissues. We verified four putatively secreted biomarker candidates, namely, PLOD2, FERMT3, SPARC, and SIRPα, as highly expressed proteins that are not affected by intratumor and intertumor heterogeneity.
View Article and Find Full Text PDFAlzheimer's disease is a chronic and progressive neurodegenerative disorder, which is the most common cause of dementia worldwide. Although amyloid plaques and neurofibrillary tangles are identified as the hallmarks of the disease, the only valid diagnostic method yet is post-mortem imaging of these molecules in brain sections. Exosome is a type of extracellular vesicles secreted into extracellular space and plays fundamental roles in healthy and pathological conditions, including cell-to-cell communication.
View Article and Find Full Text PDFKIF2A is a kinesin motor protein with essential roles in neural progenitor division and axonal pruning during brain development. However, how different KIF2A alternative isoforms function during development of the cerebral cortex is not known. Here, we focus on three isoforms expressed in the developing cortex.
View Article and Find Full Text PDFCLIC4 and CLIC1 are members of the well-conserved chloride intracellular channel proteins (CLICs) structurally related to glutathione-S-transferases. Here, we report new roles of CLICs in cytokinesis. At the onset of cytokinesis, CLIC4 accumulates at the cleavage furrow and later localizes to the midbody in a RhoA-dependent manner.
View Article and Find Full Text PDFExcitatory neurons of the mammalian cerebral cortex are organized into six functional layers characterized by unique patterns of connectivity, as well as distinctive physiological and morphological properties. Cortical layers appear after a highly regulated migration process in which cells move from the deeper, proliferative zone toward the superficial layers. Importantly, defects in this radial migration process have been implicated in neurodevelopmental and psychiatric diseases.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) is driven by complex signaling events that induce dramatic biochemical and morphological changes whereby epithelial cells are converted into cancer cells. However, the underlying molecular mechanisms remain elusive. Here, we used mass spectrometry based quantitative proteomics approach to systematically analyze the post-translational biochemical changes that drive differentiation of human mammary epithelial (HMLE) cells into mesenchymal.
View Article and Find Full Text PDFMany human-cultured cell lines survive glucose starvation, but the underlying mechanisms remain unclear. Here, we searched for proteins required for cellular adaptation to glucose-limited conditions and identified several endoplasmic reticulum chaperones in the glucose-regulated protein (GRP) family as proteins enriched in the cellular membrane. Surprisingly, these proteins, which are required for cell surface localization of GLUT1 under high-glucose conditions, become dispensable for targeting GLUT1 to the surface upon glucose starvation.
View Article and Find Full Text PDFQuantitative profiling of cell surface proteins is critically important for the understanding of cell-cell communication, signaling, tissue development, and homeostasis. Traditional proteomics methods are challenging for cell surface proteins due to their hydrophobic nature and low abundance, necessitating alternative methods to efficiently identify and quantify this protein group. Here we established carboxyl-reactive biotinylation for selective and efficient biotinylation and isolation of surface-exposed proteins of living cells.
View Article and Find Full Text PDFThe successful completion of cytokinesis requires the coordinated activities of diverse cellular components including membranes, cytoskeletal elements and chromosomes that together form partly redundant pathways, depending on the cell type. The biochemical analysis of this process is challenging due to its dynamic and rapid nature. Here, we systematically compared monopolar and bipolar cytokinesis and demonstrated that monopolar cytokinesis is a good surrogate for cytokinesis and it is a well-suited system for global biochemical analysis in mammalian cells.
View Article and Find Full Text PDFCell division requires a coordinated action of the cell cycle machinery, cytoskeletal elements, chromosomes, and membranes. Cell division studies have greatly benefitted from the mass spectrometry (MS)-based proteomic approaches for probing the biochemistry of highly dynamic complexes and their coordination with each other as a cell progresses into division. In this review, the authors first summarize a wide-range of proteomic studies that focus on the identification of sub-cellular components/protein complexes of the cell division machinery including kinetochores, mitotic spindle, midzone, and centrosomes.
View Article and Find Full Text PDFAurora B is a serine/threonine kinase that has a central role in the regulation of mitosis. The observation of Aurora B overexpression in cancer makes it a promising target to develop antitumoral inhibitors. We describe a new potential inhibitor that exclusively targets the interaction site of Aurora B and its activator INCENP.
View Article and Find Full Text PDF