Acta Crystallogr Sect F Struct Biol Cryst Commun
November 2012
PIWI-interacting RNAs (piRNAs) bind PIWI proteins and silence transposons to maintain the genomic integrity of germ cells. Zucchini (Zuc), a phospholipase D superfamily member, is conserved among animals and is implicated in piRNA biogenesis. However, the underlying mechanism by which Zuc participates in piRNA biogenesis remains elusive.
View Article and Find Full Text PDFThe conserved U54 in tRNA is often modified to 5-methyluridine (m(5)U) and forms a reverse Hoogsteen base pair with A58 that stabilizes the L-shaped tRNA structure. In Gram-positive and some Gram-negative eubacteria, m(5)U54 is produced by folate/FAD-dependent tRNA (m(5)U54) methyltransferase (TrmFO). TrmFO utilizes N(5),N(10)-methylenetetrahydrofolate (CH(2)THF) as a methyl donor.
View Article and Find Full Text PDFPIWI-interacting RNAs (piRNAs) silence transposons to maintain genome integrity in animal germ lines. piRNAs are classified as primary and secondary piRNAs, depending on their biogenesis machinery. Primary piRNAs are processed from long non-coding RNA precursors transcribed from piRNA clusters in the genome through the primary processing pathway.
View Article and Find Full Text PDFLUBAC (linear ubiquitin chain assembly complex) activates the canonical NF-κB pathway through linear polyubiquitination of NEMO (NF-κB essential modulator, also known as IKKγ) and RIP1. However, the regulatory mechanism of LUBAC-mediated NF-κB activation remains elusive. Here, we show that A20 suppresses LUBAC-mediated NF-κB activation by binding linear polyubiquitin via the C-terminal seventh zinc finger (ZF7), whereas CYLD suppresses it through deubiquitinase (DUB) activity.
View Article and Find Full Text PDFEnpp1 is a membrane-bound glycoprotein that regulates bone mineralization by hydrolyzing extracellular nucleotide triphosphates to produce pyrophosphate. Enpp1 dysfunction causes human diseases characterized by ectopic calcification. Enpp1 also inhibits insulin signaling, and an Enpp1 polymorphism is associated with insulin resistance.
View Article and Find Full Text PDFAutotaxin (ATX) is a secreted lysophospholipase D that produces lysophosphatidic acid, a lipid mediator that activates G protein-coupled receptors to evoke various cellular responses. The nuclease-like domain of ATX and the Asn524-linked glycan are reportedly critical for the catalytic activity. Recently, the crystal structures of ATX were determined, but the means by which the nuclease-like domain and the N-glycosylation participate in the catalytic activity still remain undetermined.
View Article and Find Full Text PDFAt earlier stages in the evolution of the universal genetic code, fewer than 20 amino acids were considered to be used. Although this notion is supported by a wide range of data, the actual existence and function of the genetic codes with a limited set of canonical amino acids have not been addressed experimentally, in contrast to the successful development of the expanded codes. Here, we constructed artificial genetic codes involving a reduced alphabet.
View Article and Find Full Text PDFWhen a stop codon appears at the ribosomal A site, the class I and II release factors (RFs) terminate translation. In eukaryotes and archaea, the class I and II RFs form a heterodimeric complex, and complete the overall translation termination process in a GTP-dependent manner. However, the structural mechanism of the translation termination by the class I and II RF complex remains unresolved.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
July 2012
MgtE is a prokaryotic Mg(2+) transporter that controls cellular Mg(2+) concentrations. We previously reported crystal structures of the cytoplasmic region of MgtE, consisting of 2 domains, that is, N and CBS, in the Mg(2+)-free and Mg(2+)-bound forms. The Mg(2+)-binding sites lay at the interface of the 2 domains, making the Mg(2+)-bound form compact and globular.
View Article and Find Full Text PDFMagnesium ion (Mg(2+)) is an essential metal element for life, and has many cellular functions, including ATP utilization, activation of enzymes, and maintenance of genomic stability. The intracellular Mg(2+) concentration is regulated by a class of transmembrane proteins, called Mg(2+) transporters. One of the prokaryotic Mg(2+) transporters, MgtE, is a 450-residue protein, and functions as a dimer.
View Article and Find Full Text PDFHelix-loop-helix (HLH) family transcription factors regulate numerous developmental and homeostatic processes. Dominant-negative HLH (dnHLH) proteins lack DNA-binding ability and capture basic HLH (bHLH) transcription factors to inhibit cellular differentiation and enhance cell proliferation and motility, thus participating in patho-physiological processes. We report the first structure of a free-standing human dnHLH protein, HHM (Human homologue of murine maternal Id-like molecule).
View Article and Find Full Text PDFAutotaxin (ATX), also known as ectonucleotide pyrophosphatase/phosphodiesterase 2 (Enpp2), is a secreted lysophospholipase D (lysoPLD) that generates the lipid mediator lysophosphatidic acid (LPA), which in turn activates G protein-coupled receptors to evoke various cellular responses. ATX is essential for normal development, is implicated in various physiological processes, and is also associated with pathological conditions such as cancer, pain and fibrosis. Despite its importance, the molecular mechanism of ATX-catalyzed LPA production has long been elusive.
View Article and Find Full Text PDFChannelrhodopsins (ChRs) are light-gated cation channels derived from algae that have shown experimental utility in optogenetics; for example, neurons expressing ChRs can be optically controlled with high temporal precision within systems as complex as freely moving mammals. Although ChRs have been broadly applied to neuroscience research, little is known about the molecular mechanisms by which these unusual and powerful proteins operate. Here we present the crystal structure of a ChR (a C1C2 chimaera between ChR1 and ChR2 from Chlamydomonas reinhardtii) at 2.
View Article and Find Full Text PDFPyrrolysine-tRNA(Pyl) complex is produced by pyrrolysyl-tRNA synthetase (PylRS). In this study, we investigated the substrate specificity of Desulfitobacterium hafnience PylRS. PylRS incorporated various L-lysine derivatives into tRNA(Pyl) in vitro.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2011
The specificity of most aminoacyl-tRNA synthetases for an amino acid and cognate tRNA pair evolved before the divergence of the three domains of life. Glutaminyl-tRNA synthetase (GlnRS) evolved later and is derived from the archaeal-type nondiscriminating glutamyl-tRNA synthetase (GluRS), an enzyme with relaxed tRNA specificity capable of forming both Glu-tRNA(Glu) and Glu-tRNA(Gln). The archaea lack GlnRS and use a specialized amidotransferase to convert Glu-tRNA(Gln) to Gln-tRNA(Gln) needed for protein synthesis.
View Article and Find Full Text PDFBiophysics (Nagoya-shi)
November 2011
Protein transport across membranes is a fundamental and essential cellular activity in all organisms. In bacteria, protein export across the cytoplasmic membrane, driven by dynamic interplays between the protein-conducting SecYEG channel (Sec translocon) and the SecA ATPase, is enhanced by the proton motive force (PMF) and a membrane-integrated Sec component, SecDF. However, the structure and function of SecDF have remained unclear.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
November 2011
A membrane-integrated Sec component, SecDF, associates with the SecYEG protein-conducting channel and facilitates protein secretion and membrane-protein integration. SecDF contains 12 transmembrane helices and two periplasmic domains. The first periplasmic domain (P1) plays an important role in protein translocation.
View Article and Find Full Text PDFProtein translocation across the bacterial membrane, mediated by the secretory translocon SecYEG and the SecA ATPase, is enhanced by proton motive force and membrane-integrated SecDF, which associates with SecYEG. The role of SecDF has remained unclear, although it is proposed to function in later stages of translocation as well as in membrane protein biogenesis. Here, we determined the crystal structure of Thermus thermophilus SecDF at 3.
View Article and Find Full Text PDFCyclodipeptides are secondary metabolites biosynthesized by many bacteria and exhibit a wide array of biological activities. Recently, a new class of small proteins, named cyclodipeptide synthases (CDPS), which are unrelated to the typical nonribosomal peptide synthetases, was shown to generate several cyclodipeptides, using aminoacyl-tRNAs as substrates. The Mycobacterium tuberculosis CDPS, Rv2275, was found to generate cyclodityrosine through the formation of an aminoacyl-enzyme intermediate and to have a structure and oligomeric state similar to those of the class Ic aminoacyl-tRNA synthetases (aaRSs).
View Article and Find Full Text PDFAutotaxin (ATX, also known as Enpp2) is a secreted lysophospholipase D that hydrolyzes lysophosphatidylcholine to generate lysophosphatidic acid (LPA), a lipid mediator that activates G protein-coupled receptors to evoke various cellular responses. Here, we report the crystal structures of mouse ATX alone and in complex with LPAs with different acyl-chain lengths and saturations. These structures reveal that the multidomain architecture helps to maintain the structural rigidity of the lipid-binding pocket, which accommodates the respective LPA molecules in distinct conformations.
View Article and Find Full Text PDFThe molecular mechanisms of translation termination and mRNA surveillance in archaea remain unclear. In eukaryotes, eRF3 and HBS1, which are homologous to the tRNA carrier GTPase EF1α, respectively bind eRF1 and Pelota to decipher stop codons or to facilitate mRNA surveillance. However, genome-wide searches of archaea have failed to detect any orthologs to both GTPases.
View Article and Find Full Text PDFWybutosine (yW) is a hypermodified nucleoside found in position 37 of tRNA(Phe), and is essential for correct phenylalanine codon translation. yW derivatives widely exist in eukaryotes and archaea, and their chemical structures have many species-specific variations. Among them, its hydroxylated derivative, hydroxywybutosine (OHyW), is found in eukaryotes including human, but the modification mechanism remains unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2010
No-go decay and nonstop decay are mRNA surveillance pathways that detect translational stalling and degrade the underlying mRNA, allowing the correct translation of the genetic code. In eukaryotes, the protein complex of Pelota (yeast Dom34) and Hbs1 translational GTPase recognizes the stalled ribosome containing the defective mRNA. Recently, we found that archaeal Pelota (aPelota) associates with archaeal elongation factor 1α (aEF1α) to act in the mRNA surveillance pathway, which accounts for the lack of an Hbs1 ortholog in archaea.
View Article and Find Full Text PDFO-Phosphoseryl-tRNA kinase (PSTK) is the key enzyme in recruiting selenocysteine (Sec) to the genetic code of archaea and eukaryotes. The enzyme phosphorylates Ser-tRNA(Sec) to produce O-phosphoseryl-tRNA(Sec) (Sep-tRNA(Sec)) that is then converted to Sec-tRNA(Sec) by Sep-tRNA:Sec-tRNA synthase. Earlier we reported the structure of the Methanocaldococcus jannaschii PSTK (MjPSTK) complexed with AMPPNP.
View Article and Find Full Text PDF