Publications by authors named "Nur Syazreen Ahmad"

In this work, a binaural model resembling the human auditory system was built using a pair of three-dimensional (3D)-printed ears to localize a sound source in both vertical and horizontal directions. An analysis on the proposed model was firstly conducted to study the correlations between the spatial auditory cues and the 3D polar coordinate of the source. Apart from the estimation techniques via interaural and spectral cues, the property from the combined direct and reverberant energy decay curve is also introduced as part of the localization strategy.

View Article and Find Full Text PDF

Motion control involving DC motors requires a closed-loop system with a suitable compensator if tracking performance with high precision is desired. In the case where structural model errors of the motors are more dominating than the effects from noise disturbances, accurate system modelling will be a considerable aid in synthesizing the compensator. The focus of this paper is on enhancing the tracking performance of a wheeled mobile robot (WMR), which is driven by two DC motors that are subject to model parametric uncertainties and uncertain deadzones.

View Article and Find Full Text PDF

This study presents a new technique to improve the indoor localization of a mobile node by utilizing a Zigbee-based received-signal-strength indicator (RSSI) and odometry. As both methods suffer from their own limitations, this work contributes to a novel methodological framework in which coordinates of the mobile node can more accurately be predicted by improving the path-loss propagation model and optimizing the weighting parameter for each localization technique via a convex search. A self-adaptive filtering approach is also proposed which autonomously optimizes the weighting parameter during the target node's translational and rotational motions, thus resulting in an efficient localization scheme with less computational effort.

View Article and Find Full Text PDF

In this paper, a new control-centric approach is introduced to model the characteristics of flex sensors on a goniometric glove, which is designed to capture the user hand gesture that can be used to wirelessly control a bionic hand. The main technique employs the inverse dynamic model strategy along with a black-box identification for the compensator design, which is aimed to provide an approximate linear mapping between the raw sensor output and the dynamic finger goniometry. To smoothly recover the goniometry on the bionic hand's side during the wireless transmission, the compensator is restructured into a Hammerstein-Wiener model, which consists of a linear dynamic system and two static nonlinearities.

View Article and Find Full Text PDF