Polygonumins B, C and D, derivative compounds of polygonumins A, were isolated from the stem of Polygonum minus. Based on NMR results, the structure of polygonumins derivatives is comprised of four phenylpropanoid units and a sucrose unit, with a similar structure to polygonumins A. However, the structural differences between polygonumins B (1), C (2) and D (3) can be distinguished based on the existence of methoxy, ethanoyl and hydroxyl groups and protons which bind to C-4, C-4′ and C-3″.
View Article and Find Full Text PDFBackground: Pea eggplant ( Swartz) commonly known as turkey berry or terung pipit' in Malay is a vegetable plant widely consumed by the local community in Malaysia. The shrub bears pea-like turkey berry fruits (TBFs), rich in phytochemicals of medicinal interest. The TBF phytochemicals hold a wide spectrum of pharmacological properties.
View Article and Find Full Text PDFThe GrAfSS (Graph theoretical Applications for Substructure Searching) webserver is a platform to search for three-dimensional substructures of: (i) amino acid side chains in protein structures; and (ii) base arrangements in RNA structures. The webserver interfaces the functions of five different graph theoretical algorithms - ASSAM, SPRITE, IMAAAGINE, NASSAM and COGNAC - into a single substructure searching suite. Users will be able to identify whether a three-dimensional (3D) arrangement of interest, such as a ligand binding site or 3D motif, observed in a protein or RNA structure can be found in other structures available in the Protein Data Bank (PDB).
View Article and Find Full Text PDFis a genus comprising carnivorous tropical pitcher plants that have evolved trapping organs at the tip of their leaves for nutrient acquisition from insect trapping. Recent studies have applied proteomics approaches to identify proteins in the pitcher fluids for better understanding the carnivory mechanism, but protein identification is hindered by limited species-specific transcriptomes for . In this study, the proteomics informed by transcriptomics (PIT) approach was utilized to identify and compare proteins in the pitcher fluids of , , and their hybrid × through PacBio isoform sequencing (Iso-Seq) and liquid chromatography-mass spectrometry (LC-MS) proteomic profiling.
View Article and Find Full Text PDFStructures of protein-drug-complexes provide an atomic level profile of drug-target interactions. In this work, the three-dimensional arrangements of amino acid side chains in known drug binding sites (substructures) were used to search for similarly arranged sites in SARS-CoV-2 protein structures in the Protein Data Bank for the potential repositioning of approved compounds. We were able to identify 22 target sites for the repositioning of 16 approved drug compounds as potential therapeutics for COVID-19.
View Article and Find Full Text PDFA common drug repositioning strategy is the re-application of an existing drug to address alternative targets. A crucial aspect to enable such repurposing is that the drug's binding site on the original target is similar to that on the alternative target. Based on the assumption that proteins with similar binding sites may bind to similar drugs, the 3D substructure similarity data can be used to identify similar sites in other proteins that are not known targets.
View Article and Find Full Text PDF