Publications by authors named "Nur Suhanawati Ashaari"

The increasing concern over sugar-related health issues has sparked research interest in seeking alternatives to sucrose. Trehalulose, a beneficial structural isomer of sucrose, is a non-cariogenic sugar with a low glycemic and insulinemic index. Besides its potential as a sugar substitute, trehalulose exhibits high antioxidant properties, making it attractive for various industrial applications.

View Article and Find Full Text PDF

Linalool and nerolidol are terpene alcohols that occur naturally in many aromatic plants and are commonly used in food and cosmetic industries as flavors and fragrances. In plants, linalool and nerolidol are biosynthesized as a result of respective linalool synthase and nerolidol synthase, or a single linalool/nerolidol synthase. In our previous work, we have isolated a linalool/nerolidol synthase (designated as PamTps1) from a local herbal plant, Plectranthus amboinicus, and successfully demonstrated the production of linalool and nerolidol in an Escherichia coli system.

View Article and Find Full Text PDF

In Malaysia, Piper sarmentosum or 'kaduk' is commonly used in traditional medicines. However, its biological effects including in vivo embryonic toxicity and tissue regenerative properties are relatively unknown. The purpose of this study was to determine zebrafish (Danio rerio) embryo toxicities and caudal fin tissue regeneration in the presence of P.

View Article and Find Full Text PDF

Plectranthus amboinicus (Lour.) Spreng is an aromatic medicinal herb known for its therapeutic and nutritional properties attributed by the presence of monoterpene and sesquiterpene compounds. Up until now, research on terpenoid biosynthesis has focused on a few mint species with economic importance such as thyme and oregano, yet the terpene synthases responsible for monoterpene production in P.

View Article and Find Full Text PDF

Background: Protein microarrays have enormous potential as in vitro diagnostic tools stemming from the ability to miniaturize whilst generating maximum evaluation of diagnostically relevant information from minute amounts of sample. In this report, we present a method known as repeatable arrays of proteins using immobilized DNA microplates (RAPID-M) for high-throughput in situ protein microarray fabrication. The RAPID-M technology comprises of cell-free expression using immobilized DNA templates and in situ protein purification onto standard microarray slides.

View Article and Find Full Text PDF