Dielectrophoresis (DEP) bioparticle research has progressed from micro to nano levels. It has proven to be a promising and powerful cell manipulation method with an accurate, quick, inexpensive, and label-free technique for therapeutic purposes. DEP, an electrokinetic phenomenon, induces particle movement as a result of polarization effects in a nonuniform electrical field.
View Article and Find Full Text PDFResearch relating to dielectrophoresis (DEP) has been progressing rapidly through time as it is a strong and controllable technique for manipulation, separation, preconcentration, and partitioning of protein. Extensive studies have been carried out on protein DEP, especially on Bovine Serum Albumin (BSA). However, these studies involve the usage of dye and fluorescent probes to observe DEP responses as the physical properties of protein albumin molecular structure are translucent.
View Article and Find Full Text PDFThis article describes a dielectrophoresis (DEP)-based simulation and experimental study of human epidermal keratinocyte (HEK) cells for wounded skin cell migration toward rapid epithelialization. MyDEP is a standalone software designed specifically to study dielectric particles and cell response to an alternating current (AC) electric field. This method demonstrated that negative dielectrophoresis (N ) occurs in HEK cells at a wide frequency range in highly conductive medium.
View Article and Find Full Text PDF