Publications by authors named "Nur Konyalilar"

The multisystemic effects of COVID-19 may continue for a longer time period following the acute phase, depending on the severity of the disease. However, long-term systemic transcriptomic changes associated with COVID-19 disease and the impact of disease severity are not fully understood. We aimed to investigate the impact of COVID-19 and its severity on transcriptomic alterations in peripheral blood mononuclear cells (PBMCs) following 1 year of the disease.

View Article and Find Full Text PDF

Air pollution is a major global environment and health concern. Recent studies have suggested an association between air pollution and COVID-19 mortality and morbidity. In this context, a close association between increased levels of air pollutants such as particulate matter ≤2.

View Article and Find Full Text PDF

Air pollution plays an important role in the mortality and morbidity of chronic airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Particulate matter (PM) is a significant fraction of air pollutants, and studies have demonstrated that it can cause airway inflammation and injury. The airway epithelium forms the first barrier of defense against inhaled toxicants, such as PM.

View Article and Find Full Text PDF

Background: Although studies suggest a deficiency in stem cell numbers in chronic airway diseases such as chronic obstructive pulmonary disease (COPD), the role of bronchial epithelial progenitor/stem (P/S) cells is not clear. The objectives of this study were to investigate expression of progenitor/stem (P/S) cell markers, cytokeratin (CK) 5, CK14 and p63 in bronchial epithelial explants and cell cultures obtained from smokers with and without COPD following multiple outgrowths, and to study this effect on bronchial epithelial cell (BEC) proliferation.

Methods: Bronchial epithelial explants were dissected from lung explants and cultured on coverslips.

View Article and Find Full Text PDF

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been growing swiftly worldwide. Patients with background chronic pulmonary inflammations such as asthma or chronic obstructive pulmonary diseases (COPD) are likely to be infected with this virus. Of note, there is an argument that COVID-19 can remain with serious complications like fibrosis or other pathological changes in the pulmonary tissue of patients with chronic diseases.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is known as the third leading cause of human death globally. Enhanced chronic inflammation and pathological remodeling are the main consequences of COPD, leading to decreased life span. Histological and molecular investigations revealed that prominent immune cell infiltration and release of several cytokines contribute to progressive chronic remodeling.

View Article and Find Full Text PDF
Article Synopsis
  • Monocytes, a type of immune cell, move to areas of injury in the body, and this process is controlled by changes to proteins.
  • In people with chronic obstructive pulmonary disease (COPD), a protein called PRMT7 is found in higher amounts in lung tissue, especially in a type of immune cell known as macrophages.
  • Reducing PRMT7 can lead to fewer monocytes reaching injury sites, which means less damage and inflammation, suggesting that blocking certain protein changes might help treat inflammatory conditions.
View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) is caused by the SARS-CoV-2 virus and has been affecting the world since the end of 2019. The disease led to significant mortality and morbidity in Turkey, since the first case was reported on March 11th, 2020. Studies suggest a positive association between air pollution and SARS-CoV-2 infection.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a life-threatening lung disease. Although cigarette smoke was considered the main cause of development, the heterogeneous nature of the disease leaves it unclear whether other factors contribute to the predisposition or impaired regeneration response observed. Recently, epigenetic modification has emerged to be a key player in the pathogenesis of COPD.

View Article and Find Full Text PDF