Clubroot is a devastating disease caused by Plasmodiophora brassicae and results in severe losses of yield and quality in Brassica crops. Many clubroot resistance genes and markers are available in Brassica rapa but less is known in Brassica oleracea. Here, we applied the genotyping-by-sequencing (GBS) technique to construct a high-resolution genetic map and identify clubroot resistance (CR) genes.
View Article and Find Full Text PDFBackground: Black rot is a destructive bacterial disease causing large yield and quality losses in Brassica oleracea. To detect quantitative trait loci (QTL) for black rot resistance, we performed whole-genome resequencing of two cabbage parental lines and genome-wide SNP identification using the recently published B. oleracea genome sequences as reference.
View Article and Find Full Text PDFMiniature inverted-repeat transposable elements (MITEs) are ubiquitous, non-autonomous class II transposable elements. Here, we conducted genome-wide comparative analysis of 20 MITE families in B. rapa, B.
View Article and Find Full Text PDFBackground: Expressed sequence tag (EST)-based markers are preferred because they reflect transcribed portions of the genome. We report the development of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers derived from transcriptome sequences in cabbage, and their utility for map construction.
Results: Transcriptome sequences were obtained from two cabbage parental lines, C1184 and C1234, which are susceptible and resistant to black rot disease, respectively, using the 454 platform.