Cartilage defects present a significant challenge in orthopedic medicine, often leading to pain and functional impairment. To address this, human amnion, a naturally derived biomaterial, has gained attention for its potential in enhancing cartilage regeneration. This systematic review aims to evaluate the efficacy of human amnion in enhancing cartilage regeneration for full-thickness cartilage defects.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2022
Fatty acid desaturase catalyzes the desaturation reactions by inserting double bonds into the fatty acyl chain, producing unsaturated fatty acids, which play a vital part in the synthesis of polyunsaturated fatty acids. Though soluble fatty acid desaturases have been described extensively in advanced organisms, there are very limited studies of membrane fatty acid desaturases due to their difficulties in producing a sufficient amount of recombinant desaturases. However, the advancement of technology has shown substantial progress towards the development of elucidating crystal structures of membrane fatty acid desaturase, thus, allowing modification of structure to be manipulated.
View Article and Find Full Text PDFFatty acid desaturase catalyzes the desaturation reactions by insertion of double bonds into the fatty acyl chain, producing unsaturated fatty acids. Though soluble fatty acid desaturases have been studied widely in advanced organisms, there are very limited studies of membrane fatty acid desaturases due to the difficulty of generating recombinant desaturase. Brassica napus is a rapeseed, which possesses a range of different membrane-bound desaturases capable of producing fatty acids including Δ3, Δ4, Δ8, Δ9, Δ12, and Δ15 fatty acids.
View Article and Find Full Text PDF