Enteric glia are a distinct population of peripheral glial cells in the enteric nervous system that regulate intestinal homeostasis, epithelial barrier integrity, and gut defense. Given these unique attributes, we investigated the impact of enteric glia depletion on tumor development in azoxymethane/dextran sodium sulfate (AOM/DSS)-treated mice, a classical model of colorectal cancer (CRC). Depleting GFAP enteric glia resulted in a profoundly reduced tumor burden in AOM/DSS mice and additionally reduced adenomas in the mouse model of familial adenomatous polyposis, suggesting a tumor-promoting role for these cells at an early premalignant stage.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) after complete surgical resection is often followed by distant metastatic relapse for reasons that remain unclear. In this study, we investigated how the immune response at secondary sites affects tumor spread in murine models of metastatic PDAC. Early metastases were associated with dense networks of CD11bCD11cMHC-IICD24CD64F4/80 dendritic cells (DC), which developed from monocytes in response to tumor-released GM-CSF.
View Article and Find Full Text PDFBM-derived DC (BMDC) are powerful antigen-presenting cells. When loaded with immune complexes (IC), consisting of tumor antigens bound to antitumor antibody, BMDC induce powerful antitumor immunity in mice. However, attempts to employ this strategy clinically with either tumor-associated DC (TADC) or monocyte-derived DC (MoDC) have been disappointing.
View Article and Find Full Text PDFChronic intestinal inflammation accompanies familial adenomatous polyposis (FAP) and is a major risk factor for colorectal cancer in patients with this disease, but the cause of such inflammation is unknown. Because retinoic acid (RA) plays a critical role in maintaining immune homeostasis in the intestine, we hypothesized that altered RA metabolism contributes to inflammation and tumorigenesis in FAP. To assess this hypothesis, we analyzed RA metabolism in the intestines of patients with FAP as well as APC mice, a model that recapitulates FAP in most respects.
View Article and Find Full Text PDFAlthough all-trans-retinoic acid (atRA) is a key regulator of intestinal immunity, its role in colorectal cancer (CRC) is unknown. We found that mice with colitis-associated CRC had a marked deficiency in colonic atRA due to alterations in atRA metabolism mediated by microbiota-induced intestinal inflammation. Human ulcerative colitis (UC), UC-associated CRC, and sporadic CRC specimens have similar alterations in atRA metabolic enzymes, consistent with reduced colonic atRA.
View Article and Find Full Text PDFImmune cells function in an interacting hierarchy that coordinates the activities of various cell types according to genetic and environmental contexts. We developed graphical approaches to construct an extensible immune reference map from mass cytometry data of cells from different organs, incorporating landmark cell populations as flags on the map to compare cells from distinct samples. The maps recapitulated canonical cellular phenotypes and revealed reproducible, tissue-specific deviations.
View Article and Find Full Text PDFWhereas cancers grow within host tissues and evade host immunity through immune-editing and immunosuppression, tumours are rarely transmissible between individuals. Much like transplanted allogeneic organs, allogeneic tumours are reliably rejected by host T cells, even when the tumour and host share the same major histocompatibility complex alleles, the most potent determinants of transplant rejection. How such tumour-eradicating immunity is initiated remains unknown, although elucidating this process could provide the basis for inducing similar responses against naturally arising tumours.
View Article and Find Full Text PDFEarly detection of colonic polyps can prevent up to 90% of colorectal cancer deaths. Conventional colonoscopy readily detects the majority of premalignant lesions, which exhibit raised morphology. However, lesions that are flat and depressed are often undetected using this method.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) cells fail to enter apoptosis in vivo as opposed to their non-malignant B-lymphocyte counterparts. The ability of CLL cells to escape apoptosis is highly dependent on their microenvironment. Compared to non-malignant B cells, CLL cells are more responsive to complex stimuli that can be reproduced in vitro by the addition of cytokines.
View Article and Find Full Text PDFBackground: Thalidomide may represent a novel therapeutic strategy in the treatment of chronic lymphocytic leukemia (CLL). Since the activation of nuclear factor kappa B (NF-κB) causes not only malignant transformation and tumor progression, but also allows tumor cells to evade immune surveillance, NF-κB signaling components might constitute a potential target for future therapy in CLL.
Objectives: The current study is an attempt to characterize proteins regulated by thalidomide.
Context: Talactoferrin alfa (TLF) is a unique recombinant form of human lactoferrin. The hypothesized mechanism of action involves TLF binding to the intestinal endothelium inducing dendritic cell maturation and cytokine release leading to infiltration of tumor with monocytes and T-lymphocytes and inhibition of tumor growth.
Objective: Based on promising phase II trial results, this correlative study was undertaken to examine immune mechanism of action of TLF in metastatic non-small cell lung cancer (NSCLC) patients.
Background: Dendritic cells (DCs) are important mediators of anti-tumor immune responses. We hypothesized that an in-depth analysis of dendritic cells and their spatial relationships to each other as well as to other immune cells within tumor draining lymph nodes (TDLNs) could provide a better understanding of immune function and dysregulation in cancer.
Methods: We analyzed immune cells within TDLNs from 59 breast cancer patients with at least 5 years of clinical follow-up using immunohistochemical staining with a novel quantitative image analysis system.
Non-coding RNAs are much more common than previously thought. However, for the vast majority of non-coding RNAs, the cellular function remains enigmatic. The two long non-coding RNA (lncRNA) genes DLEU1 and DLEU2 map to a critical region at chromosomal band 13q14.
View Article and Find Full Text PDFCancer-mediated immune dysfunction contributes to tumor progression and correlates with patient outcome. Metastasis to tumor draining lymph nodes (TDLNs) is an important step in breast cancer progression and is used to predict patient outcome and survival. Although lymph nodes are important immune organs, the role of immune cells in TDLNs has not been thoroughly investigated.
View Article and Find Full Text PDFChronic lymphocytic leukemia is characterized by the accumulation of B cells that are resistant to apoptosis. This resistance is induced by pro-survival stimuli from the microenvironment. TCL1 and ATM are central to the pathogenesis of the disease and associated with more aggressive disease.
View Article and Find Full Text PDFThe discovery of immune cells with regulatory effects has created considerable excitement for their potential use in inducing tolerance to transplanted tissues. Despite the fact that these cells possess essential functions in vivo, attempts to translate them into effective clinical therapies has proved challenging due to a number of unanticipated complexities in their behavior. This article provides a broad summary of research done to understand the largest of the regulatory cell subtypes, namely CD4+Foxp3+ Regulatory T cells (T(Regs)).
View Article and Find Full Text PDFImmune modulatory drugs have been successfully used to treat patients with multiple myeloma (MM), myelodysplastic syndromes displaying loss of 5q (del5q MDS) and chronic lymphocytic leukemia (CLL). Immune modulatory drugs are used in first-line therapy in combination with functionally complementary compounds, but have also shown efficacy in refractory disease. However, their exact mode of action remains unclear.
View Article and Find Full Text PDFChronic lymphocytic leukaemia (CLL) cells convert CD14(+) cells from patients into 'nurse-like' cells (NLCs). CLL cells can also convert CD14(+) peripheral blood mononuclear cells (PBMCs) from healthy donors into cells with morphological similarities to NLCs (CD14(CLL) -cells). However it is unclear whether only CLL cells induce this conversion process.
View Article and Find Full Text PDFContemporary research on cellular signaling has undergone a shift of focus from qualitative measurements of single signaling pathways to high-throughput quantitation of comprehensive signaling networks. Notably, nuclear factor-kappaB (NFkappaB) is a family of transcription factors involved in immune and inflammatory responses, developmental processes, cellular growth and apoptosis and is deregulated in a number of disease states. We have established a chemiluminescent oligonucleotide-based enzyme-linked immunosorbent assay (co-ELISA) that is simple and quantitative.
View Article and Find Full Text PDFLoss of a critical region in 13q14.3 [del(13q)] is the most common genomic aberration in chronic lymphocytic leukemia (CLL), occurring in more than 50% of patients (Stilgenbauer et al., Oncogene 1998;16:1891 - 1897, Dohner et al.
View Article and Find Full Text PDF