Publications by authors named "Nupur B Dey"

The multitude of DNA lesion types, and the nuclear dynamic context in which they occur, present a challenge for genome integrity maintenance as this requires the engagement of different DNA repair pathways. Specific 'repair controllers' that facilitate DNA repair pathway crosstalk between double strand break (DSB) repair and base excision repair (BER), and regulate BER protein trafficking at lesion sites, have yet to be identified. We find that DNA polymerase β (Polβ), crucial for BER, is ubiquitylated in a BER complex-dependent manner by TRIP12, an E3 ligase that partners with UBR5 and restrains DSB repair signaling.

View Article and Find Full Text PDF

The Comet or single-cell gel electrophoresis assay is a highly sensitive method to measure cellular, nuclear genome damage. However, low throughput can limit its application for large-scale studies. To overcome these limitations, a 96-well CometChip platform was recently developed that increases throughput and reduces variation due to simultaneous processing and automated analysis of 96 samples.

View Article and Find Full Text PDF

Recent genome-wide studies found that patients with hypotonia, developmental delay, intellectual disability, congenital anomalies, characteristic facial dysmorphic features, and low cholesterol levels suffer from aufman culocerebrofacial yndrome (KOS, also reported as blepharophimosis-ptosis-intellectual disability syndrome). The primary cause of KOS is autosomal recessive mutations in the gene However, to date, there are no studies that have determined the cellular or enzymatic function of UBE3B. Here, we report that UBE3B is a mitochondrion-associated protein with omologous to the 6-AP erminus (HECT) E3 ubiquitin ligase activity.

View Article and Find Full Text PDF

The ability of the endothelium to produce nitric oxide, which induces generation of cyclic guanosine monophosphate (cGMP) that activates cGMP-dependent protein kinase (PKG-I), in vascular smooth muscle cells (VSMCs), is essential for the maintenance of vascular homeostasis. Yet, disturbance of this nitric oxide/cGMP/PKG-I pathway has been shown to play an important role in many cardiovascular diseases. In the last two decades, in vitro and in vivo models of vascular injury have shown that PKG-I is suppressed following nitric oxide, cGMP, cytokine, and growth factor stimulation.

View Article and Find Full Text PDF

Degradation and resynthesis of the extracellular matrix (ECM) are essential during tissue remodeling. Expansion of the vascular intima in atherosclerosis and restenosis following injury is dependent upon smooth muscle cell (SMC) proliferation and migration. The migration of SMC from media to intima critically depends on degradation of ECM protein by matrix metalloproteinases (MMPs).

View Article and Find Full Text PDF

Type I cGMP-dependent protein kinase (PKG-I) mediates nitric oxide (NO) and hormone dependent smooth muscle relaxation and stimulates smooth muscle cell-specific gene expression. Expression of PKG-I in cultured smooth muscle cells depends on culture conditions and is inhibited by inflammatory cytokines such as interleukin-I and tumor necrosis factor-alpha, which are known to stimulate Type II NO synthase (iNOS) expression. We report here that the suppression of PKG-I protein levels in smooth muscle cells is triggered by the ubiquitin/26S proteasome pathway.

View Article and Find Full Text PDF

We have previously shown that type I cGMP-dependent protein kinase (PKG) can alter the phenotype of cultured vascular smooth muscle cells (VSMCs). Although the expression of contractile proteins in VSMCs has been shown to be modulated with the induction of PKG, experiments in which PKG inhibition brings about reduced expression of contractile markers have not been performed. To more thoroughly examine the role of PKG in the expression of contractile proteins, recombinant adenovirus containing the PKG coding sequence (AD-PKG) was used to induce gene expression and morphologic changes in adult rat aortic VSMCs.

View Article and Find Full Text PDF

Vascular smooth muscle cells (VSMC) undergo many phenotypic changes when placed in culture. Several studies have shown that the levels of expression of soluble guanylyl cyclase (sGC) or cGMP-dependent protein kinase (PKG) are altered in cultured VSMC. In this study the mechanisms involved in the coordinated expression of sGC and PKG were examined.

View Article and Find Full Text PDF

Rat smooth muscle cells (SMCs) stably transfected with the gene for the phenotype regulating protein cyclic guanosine monophosphate-dependent protein kinase (PKG) were used as a cell source in the preparation of three-dimensional (3D) collagen type I vascular constructs. PKG-transfected cells expressed severalfold higher levels of the contractile protein smooth muscle alpha-actin (SMA), relative to untransfected SMCs, both in monolayer culture and in 3D gels. The proliferation rate of PKG-transfected cells was lower than that of untransfected cells in both culture geometries.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionosuuvdt5bc2muqlpv4ngsv6d27hupvpi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once