Direct methanol fuel cells (DMFCs) have received extensive attention on their high efficiency, high reliability, and no carbon emission. Unfortunately, the poor methanol tolerance and sluggish oxygen reduction reaction (ORR) at cathode have seriously hindered their further development. Herein we report the synthesis of a new class of Rh-doped PdAg alloy nanoparticles (NPs) for boosting ORR activity with high methanol tolerance capacity concurrently.
View Article and Find Full Text PDFThe lack of highly active and stable catalysts with low Pt usage for the oxygen reduction reaction (ORR) is a major barrier in realizing fuel cell-driven transportation applications. A general colloidal chemistry method is demonstrated for making a series of ultrathin PtPdM (M = Co, Ni, Fe) nanorings (NRs) for greatly boosting ORR catalysis. Different from the traditional ultrathin nanosheets, the ultrathin PtPdM NRs herein have a high portion of step atoms on the edge, high Pt utilization efficiency, and strong ligand effect from M to Pt and fast mass transport of reactants to the NRs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2017
HO sensors with high sensitivity and selectivity are essential for monitoring the normal activities of cells. Inorganic catalytic nanomaterials show the obvious advantage in boosting the sensitivity of HO sensors; however, the HO detection limit of reported inorganic catalysts is still limited, which is not suitable for high-sensitivity detection of HO in real cells. Herein, novel atomic-thick PtNi nanowires (NWs) were synthesized and assembled on reduced graphene oxide (rGO) via an ultrasonic self-assembly method to attain PtNi NWs/rGO composite for boosting the electroanalysis of HO.
View Article and Find Full Text PDF