Front Aging Neurosci
February 2025
Introduction: The moment-by-moment variability in brain signals, a newly recognized indicator, demonstrates both the adaptability of an individual's brain as a unique trait and the distribution of neural resources within that individual in response to constantly shifting task requirements. This study aimed to explore brain signal variability in older adults using oxyhemoglobin (HbO) variability derived from fNIRS during tasks with increasing signal-to-noise ratio (SNR) loads and to assess the effects of varying degrees of hearing loss on speech recognition performance and related brain signal variability patterns.
Methods: Eighty-one participants were categorized into three groups: healthy controls ( = 30, aged 65.
Understanding speech-in-noise is a significant challenge for individuals with age-related hearing loss (ARHL). Evidence suggests that increased activity in the frontal cortex compensates for impaired speech perception in healthy aging older adults. However, whether older adults with ARHL still show preserved compensatory function and the specific neural regulatory mechanisms underlying such compensation remains largely unclear.
View Article and Find Full Text PDF