Traumatic brain injury (TBI) activates the NF-κB pathway in microglia and astrocytes, which secrete pro-inflammatory cytokines that disrupt the blood-brain barrier (BBB). Curdlan derivatives are promising carriers for the delivery of siRNA drugs. Herein, we evaluated the glial cell specificity, siRNA delivery efficiency, and the subsequent phenotypic regulation of glial cells by the Curdlan derivatives in the TBI mouse model.
View Article and Find Full Text PDFPro-inflammatory polarization of microglia and astrocytes results in neuroinflammation and blood-brain barrier (BBB) disruption after a primary traumatic brain injury (TBI). Herein, we demonstrate that the dual-ligand functionalized lipid nanoparticles (AM31 LNPs) were actively and specifically internalized by microglia and astrocytes via mannose receptor (MR)- and adenosine receptor (AR)-mediated endocytosis, respectively, in a mouse model of TBI. Systemic administration of AM31 LNPs carrying siRNA against p65 resulted in internalization by the glial cells in the peri-infarct region and a robust knockdown of p65 at both mRNA and protein levels in these cells, leading to significant down-regulation of key pro-inflammatory cytokines and up-regulation of key anti-inflammatory cytokines.
View Article and Find Full Text PDF