High-energy ionizing radiation brings serious challenges to medical professionals, and it demands efficient and lightweight shielding materials depending on high-Z elements and structural supporting matrices. Herein, we have integrated multiple high-Z elements and multilayer structures into composite films with interlayer scattering effects for constructing high-energy X-ray shielding clothes. A series of composite films containing different combinations of X-ray shielding particles (SnO, BaSO, and BiO) were prepared in tightly connected two layers with each layer consisting of corresponding hybrid polyacrylonitrile (PAN) fibers-reinforced hybrid thermoplastic polyurethane (TPU) coating.
View Article and Find Full Text PDFInsufficient activation efficacy and tumor immunosuppressive microenvironments hinder the infiltration of cytotoxic T lymphocytes (CTLs) for effective immunotherapy. Herein, the pH-selective multienzyme-mimetic nanozymes have been developed based on Pd-hemoporfin (Pd/Pd‒H) nanoagents for tumor sono-immunotherapy via the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway inactivation. The Pd/Pd‒H is capable of catalase-mimetic, peroxidase-mimetic, and sonodynamic effects, creating an O-rich environment and elevating the reactive oxygen species (ROS) levels.
View Article and Find Full Text PDF: We constructed a prediction model to predict a 2-year locoregional recurrence based on the clinical features and radiomic features extracted from the machine learning method using computed tomography (CT) before definite chemoradiotherapy (dCRT) in locally advanced esophageal cancer. : A total of 264 patients (156 in Beijing, 87 in Tianjin, and 21 in Jiangsu) were included in this study. All those locally advanced esophageal cancer patients received definite radiotherapy and were randomly divided into five subgroups with a similar number and divided into training groups and validation groups by five cross-validations.
View Article and Find Full Text PDFPurpose: This phase II trial investigated the safety and efficacy of chemoradiotherapy (CRT) followed by immunochemotherapy (iCT) and surgery in unresectable locally advanced esophageal squamous cell carcinoma (ESCC).
Patients And Methods: Patients with unresectable locally advanced ESCC received radiotherapy (50 Gy/25f, 5 days/week) and nab-paclitaxel (100 mg on day 1/week) plus cisplatin (25 mg/m2 on day 1/week) for 5 weeks, followed by tislelizumab (200 mg on day 1/cycle) plus chemotherapy (nab-paclitaxel 150 mg/m2 and cisplatin 75 mg/m2 on day 2/cycle) for two 21-day cycles. Patients who converted to resectable underwent surgery 2 to 4 weeks afterward.
Purpose: This prospective study in a real-world setting investigated the feasibility and safety of S-1 plus nimotuzumab (S-1-Nimo) based concurrent chemoradiotherapy (CCRT) in locally advanced esophageal squamous cell carcinoma (LA-ESCC) patients who failed to neoadjuvant chemotherapy or chemoimmunotherapy.
Methods: LA-ESCC patients who failed to converse to resectable disease after neoadjuvant chemotherapy or chemoimmunotherapy were enrolled to receive the 4-week S-1-Nimo regimen of radiotherapy (40 Gy in 20 fractions, 5 days per week), S-1 chemotherapy, and nimotuzumab. Then, after surgical assessments, patients evaluated as resectable disease received surgery; patients with unresectable disease continued to receive definitive radiotherapy (50-60 Gy in 25-30 fractions, 5 days per week) concurrently with S-1-Nimo.
Immune cell-mediated anticancer modalities usually suffer from immune cell exhaustion and limited efficacy in solid tumors. Herein, the oxygen-carrying biomimetic nanoreactors (BNR2(O)) have been developed with photooxidation-driven therapies and antigen-dependent/antigen-free immune reinvigoration against xenograft tumors. The BNR2(O) composes polymeric nanoreactors camouflaged with cancer cell membranes can efficiently target homotypic tumors.
View Article and Find Full Text PDFPhototherapy has emerged as a potential treatment strategy for bacteria-infected wounds, but the inadequate bacteria-capturing ability and excessive damage to normal tissues from single phototherapy are huge limitations. To solve the issues, herein we report the design of chitosan-based hydrogel with bacteria capturing and combined photothermal/photodynamic sterilization functions. Such hydrogel is prepared by mixing chitosan (CS) as matrix, protoporphyrin (PpIX) as photosensitizer and polydopamine (PDA) as photothermal agent and then chemically cross-linking CS with glutaraldehyde.
View Article and Find Full Text PDFBackground: To evaluate the efficacy and safety of nab-paclitaxel plus cisplatin as the regimen of conversional chemoradiotherapy (cCRT) in locally advanced borderline resectable or unresectable esophageal squamous cell carcinoma (ESCC).
Methods: Patients with locally advanced ESCC (cT3‑4, Nany, M0‑1, M1 was limited to lymph node metastasis in the supraclavicular area) were enrolled. All the patients received the cCRT of nab-paclitaxel plus cisplatin.
Objective: Definitive chemoradiotherapy (dCRT) is the standard treatment for unresectable locally advanced esophageal cancer. However, this treatment is associated with substantial toxicity, and most malnourished or elderly patients are unable to complete this therapy. Therefore, there is a need for a more suitable radiotherapy combination regimen for this population.
View Article and Find Full Text PDFVenous/arterial thrombosis poses significant threats to human health. However, drug-enabled thrombolysis treatment often encounters challenges such as short half-life and low bioavailability. To address these issues, the design of erythrocyte-membrane (EM) camouflaged nanocapsules (USIO/UK@EM) incorporating ultra-small iron oxide (USIO) and urokinase (UK) drug, which exhibits remarkable photothermal/magnetothermal effects and drug delivery ability for venous/arterial thrombolysis, is reported.
View Article and Find Full Text PDFAltern Ther Health Med
November 2024
Objective: Iatrogenic skin injury is a common neonatal skin problem that can have a severe impact on the health and life of newborns. The purpose of this study was to explore the factors influencing iatrogenic skin injury in neonates, identify and correct nursing behaviors that may lead to skin damage, thereby reduce the occurrence of skin damage and protect the health of newborns.
Methods: The clinical data of 87 neonates with iatrogenic skin injury admitted to the Department of Neonatology of Shangrao People's Hospital, China, between January and June 2022, were retrospectively collected as a research group.
Nanotheranostic platforms, which can respond to tumor microenvironments (TME, such as low pH and hypoxia), are immensely appealing for photodynamic therapy (PDT). However, hypoxia in solid tumors harms the treatment outcome of PDT which depends on oxygen molecules to generate cytotoxic singlet oxygen (O). Herein, we report the design of TME-responsive smart nanotheranostic platform (DOX/ZnO@Zr-Ce6/Pt/PEG) which can generate endogenously hydrogen peroxide (HO) and oxygen (O) to alleviate hypoxia for improving photodynamic-chemo combination therapy of tumors.
View Article and Find Full Text PDFWound healing and infection remain significant challenges due to the ineffectiveness against multidrug-resistant (MDR) bacteria and the complex oxidative wound microenvironments. To address these issues, thymoquinone-reinforced injectable and thermosensitive TQ@PEG-PAF-Cur hydrogels with dual functions of microenvironment reshaping and photodynamic therapy are developed. The hydrogel comprises natural compound thymoquinone (TQ) and poly (ethylene glycol)-block-poly (alanine-co-phenyl alanine) copolymers (PEG-PAF) conjugated with natural photosensitizer curcumin (Cur).
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is a clinically approved treatment for tumors, and it relies on the phototoxicity of photosensitizers by producing reactive oxygen species (ROS) to destroy cancer cells under light irradiation. However, such phototoxicity is a double-edged sword, which is also harmful to normal tissues. To manipulate phototoxicity and improve the therapy effect, herein we have proposed a dressing-undressing strategy for de-activating and re-activating therapy functions of photosensitizer nanoparticles.
View Article and Find Full Text PDFReactive chemical bonds are associated with the generation of therapeutic radicals and gases under internal-external stimuli, which are highly attractive for cancer treatments. However, designing multifunctional nanostructures that incorporate multiple chemical bonds remains a significant challenge. Herein, novel core-shell nanobombs integrating azo (NN) and tetrasulfide bonds (SSSS) have been constructed with sensitive ignition by both near-infrared (NIR) laser and tumor microenvironments (TME) for treating colorectal tumors.
View Article and Find Full Text PDFMild-temperature photothermal therapy (mPTT) has shown some advantages over traditional photothermal therapy, such as reducing the damage to surrounding healthy tissues and minimizing side effects. Nevertheless, cancer cells can easily repair damage caused by mild hyperthermia due to heat shock proteins (HSPs). Thus, it is imperative to maximize the mPTT efficiency by down-regulating HSPs overexpression and combining other cancer treatments.
View Article and Find Full Text PDFMultifunctional nanoagents with photodynamic therapy (PDT) and photothermal therapy (PTT) functions have shown great promise for cancer treatment, while the design and synthesis of efficient nanoagents remain a challenge. To realize nanozyme-enhanced PDT-PTT combined therapy, herein we have synthesized the Ce6@CuS-Pt/PEG nanoplatforms as a model of efficient nanoagents. Hollow CuS nanospheres with an average diameter of ∼ 200 nm are first synthesized through vulcanization using CuO as the precursor.
View Article and Find Full Text PDFUltrasound (US)-triggered therapies are promising in cancer treatments, and their effectiveness can be enhanced through the proper camouflage of sonosensitizers. Herein, we have constructed cancer cell membrane (CCM)-camouflaged sonosensitizers for homotypic tumor-targeted sonodynamic therapy (SDT). The camouflaged sonosensitizers have been prepared by encapsulating hemoporfin molecules in poly(lactic acid) polymers (H@PLA) and extruding with CCM from Colon Tumor 26 (CT26) cells, forming the H@PLA@CCM.
View Article and Find Full Text PDFBackground: Concurrent or definitive chemoradiotherapy is the standard treatment of locally advanced esophageal squamous cell carcinoma (ESCC). Elderly patients could not tolerate the standard concurrent chemotherapy and were treated with radiotherapy because of weak physical status and multiple comorbidities.
Objective: The efficacy and safety profile of concurrent (chemo) radiotherapy combined with nimotuzumab in elderly patients with ESCC were investigated.
Multimodal therapies have aroused great interest in tumor therapy due to their highly effective antitumor effect. However, immune clearance limits the practical application of nanoagents-based multimodal therapies. To solve this problem, we have designed hemoporfin-CuS hollow nanospheres camouflaged with the CT26 cell membrane (CCM) as a model of multifunctional agents, achieving homologous-targeted synergistic photothermal therapy (PTT) and sonodynamic therapy (SDT).
View Article and Find Full Text PDFPhotomedicine has gained great attention due to its nontoxicity, good selectivity and small trauma. However, owing to the limited penetration of light and difficult monitoring of the photo-media therapies, it is challenging to apply photomedical treatment in deep tissue as they may damage normal tissues. Herein, a thermal regulated interventional photomedicine based on a temperature-adaptive hydrogel fiber-based optical waveguide (THFOW) is proposed, capable of eliminating deeply seated tumor cells while lowering risks of overtemperature (causes the death of healthy cells around the tumor).
View Article and Find Full Text PDFBackground: The potential of circulating tumour DNA (ctDNA) as a reliable biomarker for relapse/metastasis early detection and prognosis in esophageal squamous cell carcinoma (ESCC) after radiotherapy/chemoradiotherapy (RT/CRT) initiation requires comprehensive investigation.
Methods: Treatment-naive locally advanced ESCC patients with available baseline plasma samples were prospectively enrolled from November 2018 to January 2020. RT/CRT was delivered with a simultaneous integrated boost of radiation dose.
J Colloid Interface Sci
November 2022
Most of tumors are located in deep-depth of animals, and the therapy of deep-seated tumors remains a severe challenge due to the performance reduction of promising technologies including phototherapy. To solve the problem, herein we have developed a hafnium-hemoporfin frameworks (HfHFs) as multifunctional theranostic nanoplatforms for synergetic sonodynamic therapy (SDT) and radiation therapy (RT) of deep-seated tumors. HfHFs are constructed by a sonication-assisted assembly route with hematoporphyrin monomethyl ether (HMME) sonosensitizer molecules as bridging linkers and Hf as metal nodes.
View Article and Find Full Text PDFIntegrated theranostic nanoplatforms with multi-model imaging and therapeutic functions are attracting great attention in cancer treatments, while the design and preparation of such nanoplatforms remain an open challenge. Herein, we report hemoporfin@CuS@MnO nanoparticles (H@CuS@MnO NPs) as multifunctional nanoplatforms for magnetic resonance imaging-guided catalytically-assisted photothermal-sonodynamic therapies of tumors. CuS hollow spherical nanoparticles were firstly prepared by in-situ vulcanization of CuO, and the growth of MnO shell was realized by the reduction of manganese permanganate, where the hollow structure of CuS could be used to load hemoporfin sonosensitizer.
View Article and Find Full Text PDF