Publications by authors named "Nuntavun Riddech"

Rice straw breakdown is sluggish, which makes agricultural waste management difficult, however pretreatment procedures and cellulolytic fungi can address this issue. Through ITS sequencing, Chaetomium globosum C1, Aspergillus sp. F2, and Ascomycota sp.

View Article and Find Full Text PDF

Rhizobacteria are well recognized for their beneficial multifunctions as key promoters of plant development, suppressing pathogens, and improving soil health. In this study, experiments focused on characterizing the plant growth promotion (PGP) and extracellular hydrolase production traits of rhizobacteria, and their impact on Jerusalem artichoke growth. A total of 50 isolates proved capable of either direct PGP or hydrolase-producing traits.

View Article and Find Full Text PDF

Saline soil is one of the major problems limiting rice productivity in the Northeastern area of Thailand. Thus, the aims of this study were to determine soil physicochemical analysis and soil enzyme activities, and bacterial communities in the rhizosphere of 'RD 6' rice grown in salt-affected rice fields. The Ban Thum sample showed the highest electrical conductivity (EC; greater than 6 dS m) and total Na, while the EC in other fields were at non- or slightly saline levels.

View Article and Find Full Text PDF

Due to different functions of phosphate solubilizing bacteria (PSB) and arbuscular mycorrhizal fungi (AMF), their potential synergistic effects on enhancing plant growth and yield are worth investigating, especially under adverse conditions. This work focused on the isolation of PSB and characterization for their plant growth promoting properties under drought. The most efficient P solubilizing bacterium was isolated and identified as strain KKUT8-1.

View Article and Find Full Text PDF

Endophytic fungi (EPF) and arbuscular mycorrhizal fungi (AMF) symbioses can promote the growth and productivity of several types of plants. This work aimed to investigate the effect of co-inoculation of an EPF NMS1.5 and an AMF UDCN52867 g.

View Article and Find Full Text PDF

In this work, the effects of co-inoculation between an arbuscular mycorrhizal fungus (AMF) and a phosphate solubilizing bacteria (PSB) to promote the growth and production of sunchoke under field condition were investigated during 2016 and 2017. Four treatments were set up as follows: plants without inoculation, with AMF inoculation, with PSB inoculation and with co-inoculation of PSB and AMF. The results showed the presence of PSB and AMF colonization at the harvest stage in both years.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB) could interact synergistically because PSB solubilize sparingly available phosphorous compounds into orthophosphate that AMF can absorb and transport to the host plant. Little is known about the interactions between these two groups in terms of promoting Jerusalem artichoke, Helianthus tuberosus L., which is widely planted by farmers because of its high inulin content.

View Article and Find Full Text PDF